e T R —
S NS R — S ——

1229
Cc.3A

{4 ullll‘J

1111177 ,.nuﬂll““

REPORT NO. 1229
NOVEMBER 1963

For Reference

l Not to be taken from this room

BRLESC FORTRAN

Lloyd W. Campbell
Glenn Beck

CUGIED 1y 4 \‘ y S
ABERDEG N wu;u ¥b: h h
i ‘

*-LL

RDT & E Project No. 1MO10501A003

BALLISTIC RESEARCH LABORATORIES

&

ABERDEEN PROVING GROUND MARYLAND

kS

-

- AT 2 e e e

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

The findings in this report are not to be construed
as an official Department of the Army position.

>
o
[z}
Lo}

BALLISTIC RESEARCH LABORATORIES

=
I=
=

REPORT NO. 1229

NOVEMBER 1963

BRLESC FORTRAN

Lloyd W. Campbell
Glenn Beck

Computing Laboratory

RDT & E Project No. 1MO10501A003

PROVING GRO

Lo
=
()
o)
<
(n
=
e/

LABORATORIES

TT

BALLISTIC RESEARC

REPORT NO. 1229

LWCampbell /GBeck/ilm
Aberdeen Proving Ground, Md.

FatOios G0}

November 1963

ABSTRACT

FORTRAN is a popular programming language that has been implemented on many

computers. It is now available on Ballistic Research Laboratories' BRLESC com-

This report describes the FORTRAN language in general and includes spe-

puter,
cific details about its implementation on BRLESC.

VII.

TABLE OF CONTENTS

ABSTRACT. & o ¢ ¢ o o & &
INTRODUCTION. « + o & & &
CHARACTER SET . . . + « &
SYMBOLIC NAMES. . « « & &
ARTTHMETIC EXPRESSIONS, .
ARTTHMETIC FORMULAS . . .

SPECIFICATION STATEMENTS.,
DIMENSTON

T v

EQUIVALENCE . + + « & &
COMMON. . + « . .
FREQUENCY -
CONTRCL STATEMENTS. « .
GOTOu o o o o o o o o &
GOTO (Computed)

ASSIGN L] L] . L] L] L] L] L] L]

GOTO (Assigned) 90 0 ¢

STOP:s o o o o o o o o o
PAUSE &« 4 ¢ ¢ ¢ o o o &
CALLe & s o « o o o o @
IF (Sense Switch) . . .
SENSE LIGHT o & o o o &
IF (Sense Light). . . .
IF ACCUMULATOR OVERFLOW
IF QUOTIENT OVERFLOW, .
IF DIVIDE CHECK . , . .
THE FORMAT STATEMENT,

10n o'y olALLN o o

DESCRIPTION OF INPUT-OUTPUT

INPUT-OUTPUT STATEMENTS .,

o N~ W

\O

N N N e
N O O

N
W AN

XI.

XXII.

XXTIT.

TABLE OF CONTENTS (Cont'd)

WRITE TAPE. ¢ ¢ ¢ o o o o o o o s ¢ o 2 s o
END FILEe o o o o o o o o o o o o o o o s o
BACKSPACE @ ¢ ¢ ¢ o o o o o o o o o o o o o @
REWIND: o « 2 o o o o o o o o o o ¢ 2 s ¢ 2 «
WRITE DRUM. .+ . v v o ¢« o o v v v o o o o o
SUBPROGRAM STATEMENTS o v o« o o ¢ o o o o o o o

SITRROUTTTNR

WULLNWULALIVLIe e o o o o o o ¢ o o o ¢ o o o o o

FrUNCTI ON e o o o & & & o e o e+ & o s+ o o o o o

ul‘ ‘J.L) .

PRE-DEFINED FUNCTIONS AND ARITHMETIC STATEMENT FUNCTIONS.

PRE-DET‘IN‘E:D SIJBROUTINES . . * o . o o o ° o °
FORTRAN PROGRAM CARDS . &« ¢ o ¢ o s o s = o o »

NNT AN AANITIAT AATITVG AN TNTAAMT -
DOLEOL VUNLIRUL LALUDDO AND DUIUVLLUNARL IFORLNLLNG,

BRLESC COMPILER ERROR FRINTS. . v o o o o o o »
BRLESC RUN ERROR FRINTS &+ & ¢ o o o o o o s o &

NADTMAMTAN N MU RRT LA TNARMRAN ONMDTT TR
VILDINHK LIV UL LU Divanwow VAVITLD L

SPEED OF BRLESC FORTRAN COMPILING . « o o o o &
RUNNING FORTRAN PROGRAMS ON BRIESC: o « o o o &

MAJTOR DIFRERENCES RETWEEN FORAST AND F TRAN

L) VIV /LU LUildVonid L0zl 4 vidid ilLIiUMiYe o

CHECKLIST FOR CONVERTING OTHER COMPUTER FORTRAN

PURTHAN o o o o o o o o o o o o o o o
SUMMARY OF FORTRAN STATEMENTS . ¢ ¢ o o o o o &
ACKNOWLEDGEMENTS., & & o ¢ o o o o o s o o o o o

NTMTMTITATIC

NOAPOALINUIOe o o o o o ¢ o o o o o o o o o o o o

APPENDIX A: LIST OF PRE-DEFINED FUNCTIONS FOR 709/7090 AND

F‘ORrITRAN L] L] L] . L] . L] L] L] L] .
APPENDIX B: THREE EXAMPLES OF FORTRAN PROGRAMS

BRLESC

AN
£ N0

W

I, INTRODUCTION

FORTRAN is a programming language that is widely used on a variety of computers
and can now be used on Ballistic Research Laboratories! BRLESC computer. FORTRAN
was designed primarily for programming of scientific problems and the evaluation
of arithmetic formulas. It is basically similar to the FORAST programming lan-
guage that is currently used on BRLESC and ORDVAC but many of the details are
different.

This manual is intended primarily for the programmers that are familiar with
FORAST and BRLESC; however, 1t includes a general description of the FORTRAN lan-
guage and should prove helpful to enyone who is interested in writing or reading
FORTRAN programs. Additional details and general information can be obtained from
other FORTRAN manuals and publications. The FORTRAN II manuals for the 709/7090
are suggested for those interested in using BRLESC FORTRAN since BRLESC FORTRAN is
more compatible with the 709/7090 version of FORTRAN than with some versions that
are used on other computers. Some readers may be surprised to learn that FORTRAN
is not the same for all computers. Although the general rules are usually the
same, differences in details do exist and some of the detail differences are quite
subtle. It is relatively easy to write FORTRAN programs which when executed on
different computers will yield different results. These differences may be due to
differences in compilers or differences in the structures of the computers. How-
ever, most FORTRAN programs require only minor modifications to allow them to run
on any given computer. The modifications usually require much less effort and

time than would be required to re-program the problem in another programming lan-

guage.

II. THE CHARACTER SET

FORTRAN allows the use of the twenty-six capital letters of the alphabet, the
decimal digits O to 9 and the special symbols + - () . * / , = . (The symbol $
is allowed only as hollerith text in a FORMAT statement.)

The card code for these characters is the same as normally used for FORAST

and BRLESC except for the following:
FORTRAN BRL

(4% Standard FORTRAN left parenthesis uses 0-4-8 punches that
normally represents % at BRL. Since FORTRAN does not allow
the 4-8 code (BRL left parenthesis) in programs, BRLESC
FORTRAN allows either code to mean left parenthesis.

7

+ - Standard FORTRAN uses card codes for the signs that are

= + Just the opposite of BRL usage (+ is x, - is y at BRL).
A "CHANGE + AND -" control card may be inserted in a
FORTRAN program to cause BRLESC to reverse these symbols.
They are initially set for BRL usage.

The T09/7090 FORTRAN and BRLESC FORTRAN also allow a 4-8

card code to be a minus sign on decimal input. BRL signs

are used for decimal input unless the SETMSI subroutine is
used to change signs. A "CHANGE + AND -" control card

does not change signs used for input data.

$. This card code X-3-8 is allowed only in hollerith text
(H fields) in FORMAT statements.

III. SYMBOLIC NAMES AND CONSTANTS

A. General Names

In FORTRAN, all symbolic names (other than statement names) must begin with a
letter and, for variables, the first letter determines the type of number it rep-
resents. Names of variables that begin with I, J, K, L, M or N represent integer
numbers whereas names beginning with other letters represent floating point numbers
(or Boolean variables). The length of symbolic names is restricted to six char-

acters except subroutine names may have a terminal F as a seventh character.

B. Statement Numbers
Iocations of statements (cols. 1-5 of FORTRAN statement cards) must be all

decimal digits and thus look like integer numbers but are really symbolic locations
of statements. (Statement numbers must be less than 32768 for 709/7090 but not
BRLESC.) They do not affect the sequence of execution of the statements.

C. Constants

1. Integer constants are written without a decimal point. An integer con-
stant on BRLESC may consist of 1 to 19 decimal degits (less than 26& in absolute
value) except for those integers involved in division operations which must be
less than 25& in absolute value. Some computers restrict integer constants to as
few as four decimal digits. The values of integer variables are restricted to

the same maximum value as integer constants on BRLESC and most computers.

2. Floating point constants must be written with a decimal point. They may
consist of a decimal point with 1 to 19 decimal digits (on BRLESC) and may be
followed by an E and a decimal exponent. The BRLESC range of floating point

8

: . 1 -1 X .
constants (variables) is between 10 55 and 10 25 approximately in absolute value
with zero also allowed. Most computers have a more restricted range of numbers.

Examples: 1. , 4.21, .2, 51.6 E2 , .1E-3

5. Boolean constants are written as twelve octal digits. If less than twelve
digits are written, zeros are added by the computer to the left of the digits to
make a total of twelve.

D. Arrays

Blocks of storage are referred to as arrays in FORTRAN and are defined in

m
n
m
0
[
-

o

atements. Subscripts are enclosed in parenth
script may be variable and "indexing", as done in FORAST, is not allowed. Sub-
scription of variables is done by substitution rather than addition and the lower
bound of all subscripts is one. Subscript arithmetic is allowed; BRLESC FORTRAN
allows any integer arithmetic expression that does not itself involve any sub-
scripted variables, however, the most general expression allowed in standard

FORTRAN is C * V + C!' where C and C' are integer constants and V is an integer

variable.
Subscripted names must not end with F unless they have three or less char-
acters

Symmetric arrays are not allowed in FORTRAN and there is no provision for

cal
X
@
n
(@)
P
<

There is no provisicn in FORTRAN for writing absolute addresses.

Iv, ARITHMETIC EXPRESSIONS

The following symbols denote the following operations:
+ addition
- subtraction
¥ multiplication
/ division
*¥% exponentiation
The use of functions (subroutines with only oneé result) is also allowed by
writing the name of the function in front of parentheses that enclose the argu-
ments. (FORTRAN allows functions to have more than one argument and commas are

used to separate the arguments.) The arguments may be arithmetic expressions.

he precedence of operations when not governed by the use of parentheses is

functions (subroutines)
¥
¥ and /

4+ and

t and -
where the operations higher or the list will be performed before those that are
lower on the list. For successive + and - operations or successive * and / oper-
ations, they will be performed from the left tc the right. Parentheses may always
be used to cause the operations to be done in any desired sequence. Successive

exponentiations must always have parentheses to show the desired grouping.

The major difference between FORAST and FORTRAN arithmetic expressions is the
grouping of successive multiplications and divisions. FORAST groups them from the

right and FORTRAN groups them from the left. Thus in the expression (A ¥ B/C * D),

L \ 4%

D is in the denominator for FORAST and is part of the numerator for FORTRAN.
Implied multiplication should not be used in FORTRAN (although some versions
deo allow it and BRLESC FORTRAN allows it after a right parenthesis).
Fixed Point Fractional Arithmetic Is Not Allowed in FORTRAN. All arithmetic
within an expression must be one mode (integer or fl. pt.) except for integer

subscripts and integer powers of exponentiation in floating point expressions.

The first letter of the names and the use of the decimal point in numbers deter-

Parentheses must not be omitted at the ends of an expression. The number of
left parentheses must be the same as the number of right parentheses in each

expression.

Two operations must not appear adjacent to each other in formulas; e.g. / -

Any operation on integers which does not yield an exact integer result is
truncated except negative integer results of division on BRLESC FORTRAN will give
the greatest integer that does not exceed the algebraic exact result. Thus -4.2
will give -5. This is probably different than results on the 7090 or other abso-

lute value machines.

For 709/7090 and BRLESC FORTRAN, boolean expressions are allowed and are
designated on cards with & B in column one. The symbols +, ¥, - denote the logi-

cal operations of or (inclusive), and, and complement respectively. BRLESC FORTRAN

10

performs these operations only on the rightmost 36 bits of a word so that it is
commatible with the 36 bit word lencth of +he 700 /7000 Mhe Teading 30 hita ~F
ML Ve e T VAl Ve UV W v Ul W wClii il v VS (VI IVIV . Lil- LlQuUillpy /o VAL Ul
a BRLESC word will be zeros after a logical operation.

OAamnl ey ardthmeti s avnveoacadAarea ava At mvoacantlar allAarrald 43 DDRTTIAN TIADID ART
WOLLPLCA adl 1 uidiCovil CAPIEbolUIic dal'e NIV DIedbelivd Alluwelu LIl DAnGoL FPUNRLOAN,
An I in column one will cause an error print.
v RTITHMETTC FPORMUT.AS
Vae ANALVENI L0 UMV LAS

The general form of FORTRAN arithmetic formulas (arithmetic statements) is
v = ae
where v is a name of a variable (it may be subscripted) and ae is an arithmetic

expression. An example would be

J)x*

—
n
~
—
H
+
N
~

X(F+1) = A

result is stored as the new

Th

o
ot
=2
D

arithmetic expression is evaluated an

[
ot

value of the variable whose name is on the left of the = symbol.

No arithmetic may be performed on the left of the

symbol except for subscript
arithmetic. Only one = symbol is allowed and hence only one variable will have its

value changed by an arithmetic formula.

The arithmetic expression may be Just a name of a variable or constant, e.g.
X = A,

VI. SPECIFICATION STATEMENTS

This group of statements (DIMENSION, EQUIVALENCE, COMMON and FREQUENCY) pro-

Ty +ha »
vy uwic p

o anA
T uotcu

storage assignment of some or all of the variables. These statements do not cause

any machine code to be generated for running the program, they only affect the way

it 1ie commiled
1T 18 compl.ed.
1. DIMENSION a(i), b(il,i2), c(i3,il,i5),, where a,b,c are array
namoae and +the 1la are intecoer ponctanta
LACALILN O Chliva Vil o Ll o doidlvegnd wAIAo Vil v O .

constants, not variables. The minimum subscript is always taken to be one. One,

two, or three dimensional arrays may be defined in any sequence.
Example: DIMENSION T(41),X(10),E(4, 4, L),A(3,7)

(ORI VA | JESNLS5
11

2. EQUIVALENCE (a,b,c,....),(d,e,f,.....), where a,b,c,d,e,f are names of
any type of variable.

This statement causes different names to be assigned to the same memory
space. (It performs the same function as SYN does in FORAST.) All the names
within a set of parentheses are made equivalent. Increments may be used if desired
by enclosing them in parentheses immediately after the name. (No increment is

o 3 e + AP e
the same as an increment of one.)

3. COMMON a,b,c,d,e, where a,b,c,d,e are the names of variables of

any type.

This statement allows the programmer to specify that certain varigbles
he same in more than one program or subprogram (subroutine or
function). The storage assigned to those items in the COMMON statement in one
subprogram is the same storage assigned to the items in the COMMON statements in
all of the other subprograms (and also the main program). Thus it also has an
equivalence effect between subprograms. All storage used in each subprogram is
different than the storage in any other subprogram except for the items that are

listed in COMMON statements.

Within each subprogram, all COMMON variables are assigned consecutively

I

n the sequence in which they appear. The starting point for all the subprograms
C

within each total program is the same. Proper space is left for arrays.

COMMON statements are used to avoid listing many arguments when using
a subprogram. By forcing subprograms to use the same storage as the main program
for some (and possibly all) of the variables, the need for specifying and moving

variables is removed.

If any COMMON variable also appears in an EQUIVALENCE statement, the

COMMON assigning has priority and is done first in BRLESC FORTRAN. This is dif-

AT T

ferent than 709/7090 FORTRAN where EQUIVALENCE variables are assigned first and

will change the sequence of storage assigned to COMMON variables. BRLESC FORTRAN

handles the COMMON-EQUIVALENCE interaction as specified for FORTRAN IV and in fact

allovws labeled (block) COMMON and array definitions in COMMON the same as FORTRAN I
4., FREQUENCY.

This statement is ignored by BRLESC FORTRAN., Its purpose in 709/7090

/
/
N is to provide information that helps the compiler to optimize the program.

TATSTTT A

12

VII. CONTROL STATEMENTS

This group of statements provides for controlling the sequence in which
statements are executed in the running program. Unconditional transfer of control

(sometimes called branching or jumpin) is provided for by several types of GOTO

statements and conditional transfer of control is provided by several types of IF
statements. A DO statement allows definition of a "loop" and a CALL statement

causes transfer of control to a subroutine with a return to the next statement.

There are two statements (STOP and PAUSE) that cause the program tc stop running.
l. GOTO s where s is a statement number.

This statement causes the statement numbered s to be done next.

GOTO 22

2. GOTO (sl,s2,s3,...),i where sl,s2,s3 are statement numbers and i is a
T

This is referred to as a "computed GOTO" and the statement done next

depends on the value of i. If i =1, sl is done next; if i = 2, s2 is done next;

Example: GOTO(4,19,462),K

3, ASSIGN s TO i where s is a statement number and i is a nonsubscripted
integer variable,.

v Y

This statement causes the address of the statement numbered s to be put
into the integer variable i and this type of statement is to be executed before
the "assigned GOTO" statement (as explained in the next paragraph) is executed.

Tt er s)
nxampiLe: ASSIGN 6)4- to M

4L, goTo i, (sl,s2,s3,....) where i is a nonsubscripted integer variable

and sl,s2,s3, are statement numbers.

This statement transfers control to the statement that has the number
that was last assigned to i by means of an ASSIGN statement. The (sl,s2,83....)
enumeration in this statement is not really necessary but should be used to list
the possible statement numbers that this "assigned GOTO" statement may transfer
control to.

Examples: ASSIGN L4 to N
GOTO N, (16,29,44,192)

5. IF (ae) sl,s2,s3 where ae is an arithmetic expression and sl,s2,s3 ar

statement numbers.

13

This statement causes control to be transferred to statement sl,s2, or
s> depending on whether the value of the arithmetic expression ae is negative,

zero (exactly), or positiv

6. DO s i = il, i2, i3 where s is a statement number, i is a nonsubscripted
integer variable and i1,i2,i3 are integer constants or nonsubscripted integer

variables.

This statement causes the statements following this DO statement up to
and including the statement numbered s, to be executed repeatedly with the integer
i3 at the end of the sequence of statements and the sequence is repeated if the
value of i does not exceed i12. The specification of i3 is optional. If i3 is

not specified, its value is taken as one (1).

A DO sequence of statements may itself contain a DO sequence provided
the entire inner DO sequence is contained in the outer one. Several DO's may

terminate on the same statement,

£

While most versions of FORTRAN have several other restric
DO loops, BRLESC FORTRAN does not have any other restrictions on the construction
of the statements that are included in DO loops. BRLESC FORTRAN does always set
and use the actual integer variable specified for i in a DO statement and its final
value (plus the increment for normal termination of the DO loop) is always stored
there.
Examples: DO 42 K = 1,L

DO 3 JT = MIN, 55, NSTEP

1l

7. CONTINUE
This is a dummy statement that generates no object code except when it is

3

0 loo Its statement number is always used if it has one.

the last statement

It must be used as the last statement in a DO loop whenever the last statement would

in a
i1 &

Nel
Fe

F=3e

have been an IF or GOTO type of statement that transfers control. Whenever a
CONTINUE statement is the last statement in a DO loop, its statement number is the

ns that increment the DO w

@]

location of the machine instructi
its maximum value.
8. STOP or STOP w where w is an octal constant that is ignored.
This statement causes the running program to be terminated and should
only be used to indicate that the program has run to completion. This statement

causes BRLESC FORTRAN to empty the tape output buffer, rewind the standard output

1k

tape if it should be rewound, check for overflows and halt at N4O. On BRLESC,
the program may t h

first ten characters of either "ENDbTAPEbb' or "bbbbbbPROB" where b represents a
blank.

jov)

1lso be terminated by reading a card or tape line that has the
-

Examples: STOP

STOP 77

9. PAUSE or PAUSE w where w is an octal constant.
This statement causes the program to halt and display the octal constant.
(BRLESC displays it in the a address of the halt order.) If the computer is
re-started manually by pressing the proper button (initiate on BRLESC), the pro-
gram will continue with the next statement.

This statement should not be used without a very good reason for usin

it.
Examples: PAUSE
PAUSE k421

10. CALL a(b,c,d,....).

This statement causes the subroutine named "a" to be entered and executed
with b,c,d... as the arguments, parameters, and store addresses. (Arithmetic
For BRLESC FORTRAN, "a" could be the name of a function

3
In]
[0
[0)]
9]
}_J
O
3
o0
V]
=
D
[0
'._l
|._l
Q
5
1]
A
g

~ A

(a subroutine with one result) and th

he subroutine being called must be one that
is a standard one on the compiler tape or one whose code is included in the pro-

gram as a SUBROUTINE (or FUNCTION).

The arguments used in a CALL statement must agree in mode with the mode

of the dummy variables that were used when the subroutine was defined. If there

CALI, EXIT or CALL DUMP statements on BRLESC are the same as a STOP state-
ment. CALL CHAIN causes an error print and CALL PDUMP is ignored.

Alphanumeric arguments are not allowed in BRLESC FORTRAN.
Examples: CALL SUB3(X,Y,R)
CALL TOTAL

m/ATT

11. IF (SENSE SWITCH i) sl,s2.
This statement transfer control to statement sl or s2 if sense switch i1
(1 <i<®6) is down or up respectively. (i must be a cons

manual read switches 15-20 are used as sense switches 1-6 respectively. However,

15

these switches may be "preset” by a program control card to be either "down" or
"up" regardless of their actual position. (See SETSSW in Section Xv.)
Example: IF (SENSE SWITCH 3)1L,92

12. SENSE LIGHT i where i is 0,1,2,3, or k.

If 1 is 0, then all sense lights are turned off. If 1 < i < 4 (actually
6 on BRLESC), sense 1, a

six) bits of cell 06

all of them are off.

ight i only will be turned on. The rightm

L i o endiat

[N

A BRTRCAM nve 1ce
Wil Diualng

C are used as sense lights. Initially on BRLESC,

Example: SENSE LIGHT 2
13. IF(SENSE LIGHT i)sl,s2

If sense light i is on, statement sl is done next otherwise statement

s2 is done next.

Example: IF (SENSE LIGHT 2)67, 39

14. IF ACCUMULATOR OVERFLOW sl,s2

This statement checks for fixed point add-subtract or shift overflow on
BRLESC and does statement sl next if it has occurred. Otherwise statement s2 is
done next. {The very last operation may not be included in the check on BRLESC

and this test turns the indicators off if they were on before.

g

15. IF QUOTIENT OV

(- AVAVE NN B Tt |

.

This does exactly the same as the IF ACCUMULATOR OVERFLOW statement

explained above,
16. IF DIVIDE CHECK sl,s2

On BRLESC FORTRAN, this statement checks for floating point division by
d

divisor) or fixed point division overflow. If either has

zero (or unnormalize
occurred in the program, statement sl is done next; otherwise s2 is done next.
(The very last operation in the previous statement may not be included in this

test on BRLESC and this test turns the indicators off if they were on before.)

VIII. THE FORMAT STATEMENT
FORMAT (Special Specifications)
This statement is not executed but is used to specify the field lengths,
spacing and the form of the data for either the reading of input data or the print-
ing (or punching) of output data. It is always used in conjunction with one of

the input-output statements and does nothing by itself.

16

Let n number of times to repeat this field. (n is optional, used as 1 if

not specified.)

w = the width of the field (the number of columns or characters).

d = the number of decimal places to the right of the decimal point. (a
is used modulo 10 on 709/7090 but not on BRLESC.)

Then the types of fields that may be speci
nlw for integer numbers.

.d for floating point numbers with exponents.

nFw.d for floating point numbers without exponents.

wX for spacing or blank columns.

nAw for alphanumeric fields.

wH for alphanumeric (hollerith) fields where the characters are
read into or printed from the w characters following the H in
the FORMAT statement itself.

nOw for Octal numbers,

Consecutive field specifications are separated by commas, thus "FORMAT

(16,3E14.6, F10.7)" is an example of a FORMAT statement. Each complete FORMAT

PanE R, L C Al

statement specifies the maximum length of thz record (card or prin

will be read, printed or punched when that FORMAT is used.

Two sets of parentheses are allowed in 709/7090 FORTRAN and four sets are
allowed in BRLESC FORTRAN so that groups of specifications may be repeated within

a FORMAT statement. A left parenthesis may be preceded by an integer n to indicate

ct

~ vt o
the number of mes to r

FORMAT (E12.5,3(I6,F9.3)) would be

repeated three times.

peat the specifications enclosed in parentheses. Thus
a

If the input-output statement list contains more items than specified by the
FORMAT being used, then a new card or line is begun and the FORMAT 1s repeated from

its rightmost left parenthesis. If this parenthesis is preceded by a repeat number,

4 LAl v ~

T ATT ~

it will be used in BRLESC FORTRAN while the 709/

it would be. If the FORMAT specifies more fields

/7090 manuals do not indicate that
than required for an input-output
list, the rest of the FORMAT is ignored except any H fields that follow the last
number will be used.

A slash "/" may be used in a FORMAT statement to indicate that a new card or
line should be started. Thus FORMAT (I10/E15.6) used for punching cards would

cause a ten column integer to be on one card and a fifteen column floating point

17

number to be on the next card. If a slash is used where a new line starts any-
way, 1t is ignored except N+l consecutive slashes will always cause N blank lines

or cards (or skip N cards for input).

Scale factors may be used with F type specifications (and in a limited way
with E type specifications). An integer, s, specifies the power of ten (scale
factor) to multiply the internal number by to obtain the external number, i.e.
input numbers get divided by 10° (not on BRLESC) and output numbers get multiplied
by lOs. The integer s is written in front of the nFw.d specifications and the
letter P is used to separate s and n, e.g. -2P4F10.5 or -2PF15.5 specify a scale
factor of 10_2. On BRLESC FORTRAN, either a + or a - sign in front of s is used

as a minus sign. Therefore never write + signs in front of s. Once s has been

specified, the scale factor remains in effect for the rest of that FORMAT state-
ment (including repetitions) and will be used on subsequent E and F type fields.
A OP specification may be used to reset it to O. For input, a punched decimal
point overides both the scale factor and the d specified. For E fields, only a
positive scale factor may be used and it does not change the value of the number,
it only indicates that s digits should be printed in front of the decimal point.
(It has no meaning for input E fields.) Thus the number 2 would normally print
0.20E01 for s = 0; but for s = 1, it would print 2.00E00 and s = 2 would print

20.00E-0O1.

I Fields
Input: Most FORTRAN compilers assume the integer to be punched at the right
end of the field without a decimal point; however, BRLESC FORTRAN

will accept it any place within the field and it may have a decimal

point.

Qutput: The integer will be punched at the right end of the field with a
floating sign. (All output has a floating sign which means that the
sign is in the column preceding the leftmost digit that is printed.
Leading zeros are not printed on I or F fields.)

E Fields

Input: The number may or may not have an exponent. An E or a sign, but not

a blank, may be used to indicate the starting of the exponent. The
exponent may be less than four columns. If a decimal point is punched,
it is used and overides the s and d specification. If no decimal

is punched, then it is assumed to be after d digits (columns)

18

F

C
e
ct
FE
&
ct

Fields

InBut:

Output

left from the start of the exponent. Most FORTRAN compilers require
that the number be punched at the right end of the field, but BRLESC
FORTRAN allows it anywhere within the field. Blank columns are used

as zeros (except after the exponent on BRLESC).

that includes an E, a sign, and two digits for the value of the expo-
nent. A decimal point is printed 4 digits from the right end of the
coefficient and if s = 0, a zerc is printed in front of the decimal
point, If s > 1, then s digits of the coefficient are printed to

the left of the point. The sign immediately precedes the first digit
printed. The entire number is printed at the right end of the field

of w columns.

The same as E fields, see above. (This may not be strictly true for
709/7090 but will generally give the desired result except possibly

for the use of a scale factor.)

The floating point number will be printed without an exponent and the
decimal point will be printed d digits from the right end of the field.
The actual number printed is 10° times the number that is in the com-

puter.

The alphanumeric information is stored in the FORMAT statement itself
immediately following the H. No transformation of characters is done,

n option setting for numeric input on BRLESC has no effect on

The w alphanumeric characters that immediately follow the H are
printed. Blanks are not ignored and there is no transformation of
any of these characters. Thus on BRLESC, "(+ - " characters will not

be the ones intended if the deck was punched using standard FORTRAN

cheracters at some other installation. {The "CHANGE + AND -" control
card does not change the + and - signs in H fields.) For tape output,
if an H field occurs at the beginning of a line, the first character

is used for vertical high speed printe r format control instead of

actually getting printed.

19

Input: This causes w alphanumeric characters to be stored in the variable
name that is on the input list. To be compatible with 709/7090,
BRLESC FORTRAN stores a maximum of six characters per word at the
right end of the word. If w < 6, the characters will be at the left
of the 36 bits with blanks to fill out the word. For BRLESC only, if
w > 6, then the additional characters will be stored in the next con-
secutive word(s), six per word. As with H fields, no transformation
of characters is done. This can be used to read FORMAT specifications

at run time.

Output: This causes w alphanumeric characters to be printed from the contents
of the variable name that is on the output list. The rules listed
above for A input are followed so that whatever is read will be
printed exactly the same.

Fields

Input: This causes w columns to be skipped whether they are blank or not.

5

Output: Causes w blank columns to be printed.

0 Fields
Input: This allows octal numbers to be read and stored at the right end of
BRLESC words in the same manner as integers. (There is no left nor-

malization.)

Output: This allows integers (octal or decimal) to be printed in octal form
at the right end of the field.

FORMAT statements may be placed anywhere within a program (or subprogram) except
as the first statement within a DO loop. (This restriction does not apply to BRLESC
but should be followed. On BRLESC, FORMAT statements are done as NOP instructions
so it is best mt to place them where they will be done often.) FORMAT statements
are kept as alphanumeric information and decoded at run time, thus it is permis-
without the word FORMAT) at run

ead FORMAT statements

—~

sible to use A fields to

[}

time. The variable names of such statements must be listed in a DIMENSION state-

ment for 709/7090 but is not required for BRLESC.

If the list in an output list is exhausted and the next item in a FORMAT state-
ment is an H field, the H field is printed. (If the end of FORMAT and list occur
at the same time and an H field follows the last left parenthesis, it will not be

printed.) Note that a FORMAT may contain nothing but one or more H fields.

20

Blank characters in a FORMAT statement are ignored except within H fields.
The w count for an H field must include the blanks within the H field.

The comma separating field specifications may be omitted when it follows an

-

H or X field specification or would precede or follow a parenthesis or slash.
(This rule may not hold for all computers but is true for BRLESC.)
Examples: FORMAT(3I5,(E15.8))
FORMAT(2HX=,F10.4, 4(1PE12.5))

FORM.W(A?lO.h/471n//\

iy WL e A A

IX. DESCRIPTION OF INPUT-OUTPUT LISTS

The names of the variables to be transmitted between the computer and the
input-out devices are specified on a list in the proper type of input-output state-
ment and the sequence of the names on the list determines the sequence of trans-
mission. Simple variable names, subscripted array names where the subscript control
is either specified in other statements or within the input-output list, and array
names without subscripts are allowed. Array names without subscripts cause the
entire array to be transmitted and the elements must (for input) or will (for out-
put) be arranged in the same sequence that they have in the computer memory.
(BRLESC and 709/7090 vary the subscripts from left to right, thus two dimensional
arrays are stored by coclumns; i.e. A(1,1), A(2,1), A(3,1) etc. is the sequence of
elements of the array A.) Commas are used to separate the names on an input-output

list.

Indexing information specified within the list is written after the names of
variables to which it applies and the names and the indexing information are all
enclosed in parentheses, For example A, (B(I), I = 1,10) would cause the trans-
mission of A, B(1), B(2), B(10). Note that the indexing information is writ-
ten the same as in a DO statement with the increment taken as one if it is not
written. It is permissible to nest these parentheses, e.g. ({4(I,J),I = 1,5),

J =1,5). Note that commes are used to separate items on the list and must be used
after a right parenthesis except for the last one. The indexing within each set
of parentheses is done to completion before going on to the next indexing specifi-

cation.

All of the input-output statements that transfer alphanumeric (not binary)
data make use of a FORMAT statement to specify the field types and leng
type (integer or floating point) of a name specified on an input-output list must

correspond to the type of field specified in the FORMAT statement that is being

N
i

T

used. All integer variables must use I fields and all floating point variables
fields. (

must use E or BRLESC does allow integers to be printed as integers in

F
E or F fields.) The FORMAT controls the maximum length of each line. A line is
D

shorter than spe ed in a FORMAT only when the end of the list is reached before

e
the end of the FORMAT. Whenever the end of the FORMAT is reached before the end
of the list, the FORMAT is repeated from the last right parenthesis and a new line

(or card) is started. (See Section VIII for more information sbout FORMAT state-

ments.)

Constants and arithmetric expressions are not permitted on input-output lists

except indexing information may contain constants and subscripts may be constant

or arithmetric expressions.

It is permissible to read an integer varisble and use it as a subscript within
the same input list if its name is separated from the place it is used by at least
two left parentheses. (This is counting the one used to indicate & su
variable. Extra parentheses may be used just to meet this requirement.) Thus
J,(B(J)) is an example where the value of the variable J just read will be used as
the subscript for B(J). (For BRLESC, the extra parentheses are not required if
two or more variables or any indexing information separates the integer from where
it is used.)

Examples: A, B, I
N, M, (

X, INPUT-OUTPUT STATEMENTS

The following group of statements may be used in FORTRAN to control the flow
of information between the computer and input-output devices or secondary storage.
ard reading or punching, magnetic tapes and, on some computers but not on BRLESC,
drums may be used to read or record data. Most of the statements also use a FORMAT
statement to control the conversion of data between computer form and printer or
card form. However, the READ TAPE and WRITE TAPE (and the corresponding DRUM state-
ments on computers that allow them) cause the transfer of data without any conver-
sion. This computer form of data will be referred to as binary information and
actually is binary numbers for a binary computer such as BRLESC. The other state-
ments cause the reading or printing of data in alphanumerical form. There are
three statements, END FILE, REWIND and BACKSPACE that do not transfer data but can

be used to manipulate the magnetic tapes.

22

«

In all of the input-output statements described below:

f is a FORMAT statement number or namne.
"list" is any allowable input-output list {See Section IX).
t is a magnetic tape number or variable. (See BRLESC restrictions

on t at end of this section.)

READ f, list
This statement causes decimal and alphanumeric data to be read from cards
(or tape 6 on BRLESC if the cards have been put on tape off-line and console
switch 36 is up.) (BRLESC may use ail 80 columns for either input or output cards.)
If the list is omitted on this statement, one card will be read and ignored on

BRLESC.

This statement causes decimal and alphanumeric data to be punched on cards
(or actual tape 13 if console switch 38 is up. The tape output will be "formatted"
for the high speed printer by adding a 1 character at the beginning of each "card"
and an end-of-line character "A" at the end of each "card". The block length will
be at least 860 characters.) All 80 columns of a card may be used on BRLESC and
for tape 13 output, the "card" may be up to 160 columns long.
PRINT f, 1list

For most computers, this statement means to print the data on an on-line
printer. Since BRLESC does not have an on-line printer, the data is put on actual
tape 13 for off-line printing. The maximum line length for most computers is 120

characters, but is 160 characters on BRLESC.

character of a line comes from an H field, it will be used for vertical format
control (after a transformation) and not printed. If the first character does not
come from an H field, an extra "1" character (single space) is inserted at the

1 +
1 so that

@]
[
ct

beginning of the line. In either case, the zone bits will be set to
is possible to print PRINT output separately from PUNCH output when both are on
tape 13. The end-of-line character "A" is automatically inserted at the end of
each line. The tape writing is parity checked but there is no checking for end of
reel. The tape block length is at least 860 characters and this allows about

5 million characters or 60,000 lines of 80 characters each on a reel of BRLESC tape.

For BRLESC, a control card may be used to change all PRINT statements to

PUNCH statements.

25

This statement causes decimal and alphanumeric input data to be read from tape
a is assumed to be a separate record (block) on tape and may
be as long as 120 characters (160 on BRLESC). If the tape was previous output

as a vertical format character at the beginning of each line, provision
skipping that character. If the tape was previous
BRLESC output, the first character is probably not a blank.) The tape reading is
parity checked on BRLESC but there isn't any checking for end of reel.

If the "list" is omitted with this statement, it will cause one line to be

read and ignored on BRLESC.

Just INPUT may be used instead of READ INPUT TAPE in this statement on BRLESC.
WRITE OUTPUT TAPE t, f, list

This statement causes decimal and alphanumeric output data to be recorded on

tape t. Each line of data is recorded as one record (block) on the tape and may

LY o 000 Guus S 9 8 L 1S Wi 4 pei =N 4

~

not exceed a total of 120 characters (160 on BRLESC). The first character will be
used as a vertical format control for the high-speed printer and is determined in

the same manner as for the PRINT statement described above except the zone bits

The tape writing is parity checked on BRLESC but there is no checking for the
end of a reel. About 9500 lines of print will fill a BRLESC tape.

Just OUTPUT may be used instead of WRITE OUTPUT TAPE in this statement on BRLESC.

(=8 i AR W ip &)

READ TAPE t, list

auses binary information to be read from tape unit t. It
should be used only for reading data that was previously put on tape by the use of
the WRITE TAPE statement described below. This statement will not read more data

than was specified on the list of the statement that wrote the data. (Such a group
of data is defined to be a "logical record".) If less than the entire logical
record is read, the tape will move to the end of the record. (If the list is
omitted entirely, the tape still moves to the next logical record.) If an attempt

is on one logical record, the unused portion of the

(@]
H
@
@
£
=
@]
H\
(0]
jo]
[
ct
o]
ct

is made t

list will be ignored.

2k

On BRLESC, binary logical records are subdivided into tape blocks of 128
words each. Within each logical record, the first word of each tape block is

zero except for the last block. The first word of the last block contains in the

n

a address the number of words in the last block (not counting this word) and in

the 7 address, the total number of blocks in the logical record.

WRITE TAPE t, 1list

This statement causes all of the data specified on the list to be written as
binary information in one logical record (see READ TAPE) on tape unit t. It is
useful for temporarily recording data on tape that may be read back into the com-
puter by using a READ TAPE statement at a later time. See the explanation of the
READ TAPE statement for a description of the way the information is "blocked" on

. : .
This statement causes tape t to be moved backward one "logical record”. This

is all of the data written by the WRITE TAPE statement that wrote the record for

a binary tape, or is one line (or "card") if it is an INPUT or OUTPUT tape.
REWIND t

This statement causes tape t to be rewound without being interlocked.
READ DRUM i, j, list

This statement is not allowed on BRLESC and causes an error print. For the

709/7090, it means to read data from drum i beginning at the jth word. (Variable

subscripts are not allowed on the list.)

WRITE DRUM i, j, list
This statement is not allowed on BRLESC and causes an error print. For the
709/7090, it means to write data on drum i beginning at the jth word. (Variable

subscripts are not allowed on the list.)

Additional Notes on Input-output Statements:
The f (FORMAT number or name) may be omitted in READ,; PUNCH or PRINT state-

ments on BRLESC and this will cause a FORMAT (1P6El2.5) to be used automatically.

N
\N

number must not be used in the program for any other purpose. If either one is
used as a statement number in a program, then the corresponding automatic FORMAT

cannot be used.

The omission of a "list" on any of the input statements will cause one record
(card, line, or logical binary tape record) to be read and ignored on BRLESC.
Some computers may allow the FORMAT specified to be used to skip more than one
record. Note that a FORMAT should be specified when the list is omitted although

it is not necessary to do so on BRLESC.

The number of print positions on BRL's high-speed printer is 160. BRLESC
FORTRAN allows at most a total of 170 characters for a line including the vertical
format and end-of-line characters. When the 1401 can be used to print BRLESC tapes,
the line length will probably be restricted to 132 characters.

ADDITIONAL NOTES ON THE USAGE OF MAGNETIC TAPE ON BRLESC:
All of the tape reading and writing is parity checked. Rereading erroneously
ten consecutive times or rewriting wrong twice after each of five consecutive "GAP

instructions" causes an error print and BRLESC stops running the programs.

There is no checking for end-of-reel conditions in BRLESC FORTRAN.
Single line per block INPUT or OUTPUT tapes will only hold about 9500 lines while
PRINT or PUNCH tape output will hold about 60,000 lines per reel.

The only restriction on switching between reading and writing of tapes is
that writing should only begin at the beginning of a tape. (If writing is started
in the middle of a tape, an extra "block" of random bits may be written on the
tape.) Whenever a tape on BRLESC is switched from writing to reading, a file
mark and an extra one word block that says "END TAPE" is automatically written on
the tape before the final file mark is written and then switching is done. (This

extra block is ignored by a BACKSPACE statement.)

The tape unit number t may be either a decimal integer constant or variable.
If t is a variable, the integer value it has at the time the tape statement is
executed is used as t. The following table shows the correspondence between the
value of t and the tape switch on BRLESC. The actual tape handler used depends on
the switch setting.

26

] Switch

1 or i1l 1

2 or 12 2

3 or 13 3

L or 1k L

5 or 15 5

6 9
7 10

8 11

9 12
10 7 (temporary or output only)

Note that 1 < t < 15 and that t is used modulo ten for 11 <t < 15. (If t > 15
is used, it will be used modulo 16.) PRINT (and PUNCH) tape output uses switch
13, the
temporary storage while compiling, and card input put on tape off-line uses switch
6. (Usage of switches 6,7 and 15 are identical to FORAST.) When le

0

ompiler itself uses switch 15 for its own program and uses switch 7 for

aving problems
to be run on BRLESC, the switch number rather than the t number should be used in

the instructions to the computer operator.

D
[

A1l printer output is formatted for variable length lines for the off-line

high speed printer, PUNCH tape output automatically has a single space character
"1" inserted at the beginning of each line and an end-of-line character "A" at the
end of each line. The same is true of PRINT and WRITE OUTPUT TAPE output if the

first field of the line is not an H type field. If the first field is an H field,

then the first character of the field is used for vertical format control after

undergoing the following transformation:

H Field Tape
+ or - blank (no space)
0 or 2 2 (double space)
lor8 8 (start new page)
Others 1 (single space)

The zone bits of the format character will be 00 except PRINT output will have 0O1.

FORTRAN programs are supposed to contain an END FILE statement and a REWIND
statement for each output tape used in the program and a REWIND statement for each

input tape. If this is not done at the end of the program, the operator will have

27

to manually do these operations and the output tape will not have a file mark at

its end. PRINT (or PUNCH) tape output on BRLESC is automatically completed and
t

rewound unless PAUSE is used to halt the problem instead of STOP, CALL EXIT, or

CALL DUMP.
XI, SUBPROGRAM STATEMENTS
FORTRAN allows sections of a FORTRAN program to be designated as subroutines

that may be use
FUNCTION, RETUR

at many different places in the main program. The SUBROUTINE,

= &

and END statements allow the programmer to define and name por-
f his program as subprograms and they provide information that allows the
compiler to provide for the substitution of variables at run time and standard

entry and exit methods used for subroutines.

Any subprogram may use any of the FORTRAN statements within itself except
SUBROUTINE and FUNCTION statements. Any subprogram may use any other subprogram

—mm OVt vTT)
See oecLlion All)

—

ubroutine of any type, including arithmetic statement functions t
that are defined at the beginning of the subprogram. Recursive subprograms (sub-

programs that use themselves) are not allowed.

1. SUBROUTINE a(b,c,d,e,....)

This statement marks the beginning of a subprogram that we shall call

a SUBROUTINE. The name of the SUBROUTINE is a and b,c,d,e,... are the names of
nonsubscripted dummy variables that will be replaced at run time by the actual

variables that are listed in the CALL statement that causes this subroutine to be

11ow this
1Jlow tnis

ubroutine consists of the FORTRAN statements that f

(@]

statement down to an END, FUNCTION or another SUBROUTINE statement.

of the SUBROUTINE does not indicate the mode of any result and
hence any letter may be used as its first character. However, the last character

of the name must not be F unless it has less than four characters.

Except for the COMMON storage, all variables within a SUBROUTINE (or
FUNCTION) are assigned storage that is unique and not used by any other part of the

riable X may be used in several SUBROUTINES within a program

<

and each X will be different unless it appears in the same relative position in

COMMON statements in each of SUBROUTINES.

No storage i1s assigned to the dummy variables; on BRLESC, DM will appear
in the dictionary instead of an address. If a dummy variable is an array name,

ined within the subroutine and the size must either be

28

identical with the size of any actual variable used to replace it or else its

size must be defined by other dummy variables. Dummy variable array subscripts in
DIMENSION statements is a feature of FORTRAN IV and is not allowed in other ver-
sions of FORTRAN.

Example: SUBROUTINE POGO(A,XX,L)

2. TFUNCTION a(b,c,d,...)
This statement is similar to the SUBROUTINE statement but should be used
whenever the subroutine has only one result. No dummy variable should be listed
for the result as it is intended that the function will be used in an arithmetic

expression and the result is simply used in evaluating the rest of the expression.

The name of the function is a and b,c,d represent nonsubscripted dummy
variables. The name of the function does indicate the mode of the result by its
first letter and the final character must not be F if there are more than three

llgll

characters in the name. The first character of the name "a must be I,J,K,L,M or

N if and only if the result is integer.

Within the FUNCTION subprogram, some statement should store a value in

a variable that has the same name as the name of the subroutine and this will be

used as the result.

There must always be at least one dummy variable for FUNCTION subprograms.

Example: FUNCTION LOW (Ql,T)

This statement may be used as often as desired within subprograms (SUB-
ROUTINE or FUNCTION) to indicate the point or points at which execution of the

subprogram should stop and control should return to the program that is using the

subprogram. It should always be used at least once in every subprogram.
4., END
mh

This statement may be used at the end of any subprogram or at the end of

the main program. It is not required on BRLESC. All program decks on BRLESC do

require the very last card of the entire program deck to be a card that has an E

-

29

Most computers other than BRLESC compile each subprogram as though it
is a complete FORTRAN program and only provide a binary card deck that must be
assembled with other binary decks to actually run the program. Hence they require
an END statement at the end of each main program and each subprogram.

2 e P T TR P

he main program and all the subprograms must be compiled
at the same time and thus can be run without the use of any binary decks. BRLESC

has a limit of 30 subprograms used in any one program deck,

XII. PRE-DEFINED FUNCTIONS AND SUBROUTINES

FORTRAN subroutines are separated into two classes, (1) functions are those
subroutines that have only one result and hence may be used in arithmetical expres-

sions; and (2) SUBROUTINE subprograms (See Section XI) or other subroutines that

may have more than one number as a result and may be used only by CALL statements.
Functions

There are three methods of defining a function. They are

1. Pre-defined functions that may be used by using the pre-defined name.
2. Arl thmetic statement functions
3, TFUNCTION subprograms. (See Section XI)

Pre-defined Functions

Unfortunately, there is not much standardization of the pre-defined sub-
routines that are allowed on various computers. Appendix A lists the pre-defined

functions that are allowed on 709/7090 and BRLESC.

Naming Functions

3 3 $ + 3 + -+ + 4 "o vty o4
Pre-defined function (and arithmetic statement function) names must

same as any of the function or subroutine names either with or without t
F. TFor BRLESC, the terminal ¥ is not necessary when using pre-defined functions

but is necessary in both the definition and use of arithmetic statement functions.

The naming of FUNCTION subprogram functions uses different rules that are the
same as for naming arrays. An initial letter of I,J,K,L,M, or N indicates an
integer result and the last character must not be F if there are more than three

characters in the name.

Use of Functions

of the three types of functions may be used in an arithmetic expression

c'
<
3]
=
He
ct
)
o]
[0}
e

ts name in front of a pair of parentheses that enclose the list of
arguments. The arguments must correspond in mode and number to the dummy var-
in defining the function. Successive arguments are separated by

commas and they may be arithmetic expressions.

For BRLESC, any function may also be used in a CALL statement by including

an extra variable name that specifies where to store the result.

Arithmetic Statement Punctions
Arithmetic statement functions are functions that can be and are defined by
one arithmetic statement at the beginning of a program (or subprogram). The name

of the function followed by the dummy arguments enclosed in parentheses are written
to the left of the = symbol. The arithmetic expression that describes the function
in terms of the dummy variables is written to right of the = symbol. The dummy
variables cannot be subscripted. Any variable used in the expression that is not

g dummy variable will be identical to the variable of the same name in the program
(or subprogram) in which the statement is contained. (An arithmetic statement

ion only applies and can be used only in the program or subprogram

ocated.)

ot
e o
()]
oot

i ey

An arithmetic statement function may use any of the other types of functions

and may also use other previously defined arithmetic statement functions. All

arithmetic statement functions must precede the first statement that gets executed

in the program or subprogram.
The dummy variable names used must indicate the same type of arithmetic that
is required when the function 1is actually used.
Example of defining an arithmetic statement function:
FUNF(A,B,C) = A¥*2 - SINF(B*C)+C
Example of using this arithmetic statement function:
Q + FUNF(X,S + EXPF(V¥*2),1L4.)
XIII. PRE-DEFINED SUBROUTINES
A subroutine may be pre-defined and exist on the compiler tape or it may be
defined by a SUBROUTINE subprogram. (See Section XI.) Subroutines may be given

N

any valid name (no restrictions on the first or last letter) and may only be used

by a CALL statement.
31

The following subroutines are pre-defined in BRLESC FORTRAN:
SETMSI () Set minus sign for input.
SETPST (j) Set plus sign for input. (Not necessary, anything not
minus is plus.)
SEM™MSO () Set minus sign for output.
SETPSO (J) Set plus sign for output.

w7 1 2 4
where j is an integer constant:

3 means X or y punch.
SEXAPR(A,B) Sexadecimal print from A to B.
B.IN Goes to binary input routine after saving a return Jjump
instruction in 073.
POWER. (A,B,C) Computes C = A**B where B may be integer of fl. pt.
SINCOS(A,B,C) Computes B = SINF(A) and C = COSF(A).
Additional pre-defined subroutines will be added in the future.

XIV. FORTRAN PROGRAM CARDS

BRLESC FORTRAN uses the same card format for punching FORTRAN programs that

is used by other computers.

Columns:

1 -5 Statement number (integer).

6 Continuation Card if not zero or blank.
7 - 72 One FORTRAN statement.
73 - 80 Identification.
The statement number must be a decimal integer. ILeading zeros are lgnored.
g &t

Column 1 is also used to indicate special types of cards. The following list
P P g

shows the special characters that indicate special cards:

32

Comment card. Columns 7-80 may be used for comments.
709/7090 monitor card or BRLESC control card. '
Boolean statement card.

Double Precision statement card.

Complex Arithmetic statement card. (Not allowed on BRLESC.)

H H O W %

Used to specify names of subroutines used as arguments.
7-8 End-file signal on 709/7090, ignored on BRLESC.

J BRLESC only, Jjump to binary input routine immediately.
E BRLESC only, is last card of program deck.

Column 6 is used to mark cards that are a continuation of the previous card.

It 1s used as a continuation if Column 6 contains any character other than zero
or blank. The only exception to this rule 1s that the first card of a program may

use Column.6 for identification information if it has an ¥ in Column 1. BRLESC
does not limit the number of continuation cards allowed but 709/7090 and some other

computers restrict a statement to nine continuation cards.

Columns 7-72 contains information, not more than one statement, comments,

control information, etc. depending on the type of cards as indicated by Column 1.
Columns 73-80 are ignored by BRLESC and may contain any desired identification.
Blank columns are ignored except when they are in an H field in a FORMAT

statement.

Blank cards will be ignored on BRLESC.

P

programs. It only means that the key punchers must not use Column 6 as part of the
a

statement number and must not allow a statement to go past Column 72. It does not

[
H
ct
=
(D
B3
g
D
(o]
=
o
e
o
o
Q
o
ct
i
\5
]
Q
"
i
g
=}
(o]
ot
e
o)
o]
—
D
e
ct+
=3
[0}
H
g
=
4]
1
(o))
]
Hh
e
o]
[
Q
o]
R
Q
]
[N
[
15
]
Q
o’
<
®

subprogram) is used as an argument for anot e
without the terminal F, must appear on a card with an F in Column 1. This F card

must be in the program (or subprogram) that uses the subroutine as an argument and

antrrshara wi+hin +ha+
Qlly wiiTi T wWdu v |9

aratod hy rAamma o Y -
gra vl Oy COmmas.) . cead O
. _ e R ~
Example: F olN, kXP UN ATAN - '
P o B, FURD LLOTIDEM

Y ey

The terminal F is also to be omitted in the statement that uses the name as

*

LS es i niare]

an argument. At least on BRLESC, arithmetic statement function names may also be
used as arguments for other subroutines without appearing on an F card. However,

the terminal F must always be used on arithmetic statement function names on BRLESC.

When writing a subprogram that will accept subroutine arguments, the dummy
variable should not have the terminal F in the SUBROUTINE or FUNCTION statement but

must have a terminal F added to it when it is used in arithmetic expressions.

XV, BRLESC CONTROL CARDS AND DICTIONARY PRINTING

The use of certain control cards are allowed to affect the compilation of
FORTRAN programs. Most of these apply to BRLESC FORTRAN only; although some are
also used on 709/7090. All of the control cards are marked with an * in Column 1

with the control information starting in or after Column 7.

* The first card of a program that has an * in Column 1 (except a
DATE card) is used as identification and is printed in front of the PUNCH

d
output. Columns 2-80 may be used. (On all other cards with * in Column
2

* CHANGE + AND -
This card reverses the meaning of + and - signs in the program deck,
except in FORMAT statements. BRL +(11) and -(12) signs are used initially.

* SETSSW 1 U'Pl

(DR RS0 S DOWNJ
This control "statement" allows sense switch i to be "preset' either
UP or DOWN. By using this control card, the operator can be relieved of

actually setting the sense switches.

e PRTOPU
This control statement causes the compiler to translate all following
PRINT statements as though they were PUNCH statements. (Allows card out-
put instead of tape.)

* RTTORC
This control statement causes the compiler to translate all following
READ INPUT TAPE or INPUT statements as though they were READ statements.

(Use card input instead of tape.)

T Tevara o T T

E3
=
M
=
C
v
(e

This control statement causes the compiler to translate all following

WRITE QUTPUT TAPE or OUTPUT statements as though they were PUNCH statements.

34

Either of these causes the storage dictiomary to be printed. The

The dictionary is printed with names of variables arranged in alpha-
betical order within each subprogram. Functions (except arithmetic
statement functions) and subroutine names will be preceded by two aster-
isks. Main program names will be preceded cnly by two blanks and sub-
program names will be preceded by one character and one asterisk. The
character preceding each subprogram name will be 1,2,...,9,A,B,....T
corresponding to the sequence in which the subprograms appeared in the
program deck

Following each name will be the sexadecimal memory address that has
been assigned to the name. Following this address, any of the following

letters may appear:
A indicates an array name.
X indicates an integer variable,
C 1indicates the name was in a COMMON statement.
E indicates the name was in an EQUIVALENCE statement.
U indicates the name was used only once.

Statement numbers are printed at the right end of the six character
name position and therefore always precede the names of the variables in
any program. The compiler usually adds a few names to the dictionary to
indicate temporary storage and special subroutines. The name % SUBS. is
printed at the end of the dictionary to indicate the length of the pre-
defined subroutines. The subroutines extend from this address down
through 0103L and includes all of the input-output storage and sub-
routines. The % NOS. name printed as the next to last name in the
dictionary indicates the length of the
from 0SO down to but not including the address printed after % NOS., is

used to store the constants and the "array words" required by the pro-

35

For array names, the address assigned in the dictionary is not the

[
ct
o
©

initial address o array, but is the address of the "array word" in
the constant pool. The "array word" contains the dimension of the array
g

in its leading two bits, the maximum value of each subscript, (15 bits

for each subscript starting at the right end of the B address and going
to the left), and the "base address" at the right end of the array word.

The "base address" is not the initial address of the array either; for

b

one dimensional arrays, it is one less than the initial address, for
two dimensional arrays, it is (Imax. + 1) less than the initia
and for three dimensional arrays, it is (Imax + Imax . Jmax +

S
than the initial address. (Imax and Jmax are used here to represent

the maximum declar value of the first and second subscripts respec-

tively for an array.)

Whenever t
NIeNevVer U

icticnary is printed, the constant pool is also printed
s0 that the programmer can determine the actual storage assigned tc arrays.
A better method of printing the array storage assignment will be added

in the future.

Names in COMMON are assigned last, so the last name in the COMMON
assignment within the subprogram that has the most COMMON storage will
mark the end of all the storage used by the program. The instructions
for the program and all the subprograms are stored first, then all the
variables not in COMMON are assigned storage immediately after the instruc-
wed

tions and this is by those variables in COMMON.

LIST8
LIST (S.CODE)

. . s 2
Either of these control cards cause the dictionary and the sexadecimal

code for the entire program to be printed. Four instructions are printed

on a line with the address of the first one printed at the beginning of

the line. The * in Column 1 of LIST (S.CODE) may be omitted unless LIST

Ao +HE i nd +he anhroiid
>s the entire program and tne subroutin

uses to be punched on binary cards with absclute addresses. To use this

deck to run the program, it must be preceded by a binary input routine

U
)
3

and followed by the standard set of FORTRAN input-output routines and a

jump to 073.

of an array.

The * in Column 1l may be omitted unless LIST is the name

XVI. BRLESC COMPILER ERROR PRINTS

The BRLESC FORTRAN compiler checks for a limited number of types of errors in

the program it is compiling. It definitely will not find all possible errors, but

some errors will cause one of the error prints listed below. The type of error

can be recognized either by the number that follows the word ERROR and precedes

the comma or by the "error word" that is printed. The form of the error print is

where
it

m

FORTRAN ERROR t,m Error Word Ident. W First 30 cols. of * Ident.Card.

Error word

Ident.
W
TAPE ERROR WORD
1 ILL.CHAR,
2 SYM. ST.NO
3 MIXED EXPR
b INT**FLT
5 IL.RETURN
6 NO = IN DO
7 SUBPRS. 30
8 BIG ADD.ID
9 NO, CP.GOTO
10 ILL,STAT,
11 FLT. INDEX
12 ILL,DIM.

type of error
ten col. field at which error was detected; m = 0,1,...,7
ten alphanumeric characters that describe the type of error
as listed below.
cols. 73-80 of card at which error was detected.
rest of the mth field on the card at time of error detection.
DESCRIPTION

Tllegal character on program card.

Symbolic statement number, not all decimal digits.

Mixed expression, integer and fl. pt. arithmetic.

Integer raised to fl.pt. power is illegal.

Tllegal RETURN statement, used in main program.

No equals symbol at proper place in DO statement.

Tried to compile more than 30 subprograms.

Big address is indexed. Program is too big.

No comma at proper place in computed GOTO statement.

Illegal type of statement or too long a name at beginning

of arithmetic statement.
Subscript involves a fl.pt. number

Number of subscripts is not same as dimensionality of the

array.

37

TYPE ERRCR WORD DESCRIPTION
13 ILL,COMMA Comma is used improperly in an arithmetic expression
14 ASD,ST.NO Assigned statement number; same statement number used twice.
15 COMPLEX AR Complex arithmetic cards (I in Column 1) not allowed on
BRLESC.
16 EQU. TABLE EQUIVALENCE table is full.
17 COM, ASSND COMMON name was previously assigned.
18 ARRAY . REF Array name used before it was defined.
19 DICT,FULL Dictionary is full.
20 COL.7 NO. Statement begins with a decimal digit.
21 SENSE > 6 Sense light or Sense Switch number greater than 6.
22 DO NO END Statement number used in DO never appeared. (It may have
been missed due to another error.)
25 LONG NAME A name was seven or more characters long and seventh
character was not an F.
2L IL. EQUALS Illegal = symbol or arithmetic was specified on the left
of the = symbol.
25 IL. - BOOL Illegal "not" operation on boolean card.
26 IL. / BOOL Boolean division is undefined.
27 CALL CHAIN "CHAIN jobs" cannot be done on BRLESC. (Segmentation of
program using tape.)
28 IL,%*¥BOOL Boolean exponentiation is undefined.
29 DRUM STAT. Drum statements not allowed on BRLESC.
30 IL, IO LIST Tllegal input-output list.

ERROR TAPE 7 FORTRAN Special error print that usually means machine error.

It must be remembered that the above mentioned cause is only the probable

error. Sometimes some type of undetected error later causes one of the detected
error prints at a point where no error exists. It also happens that some errors
are not detected until the next card has been read. (W=m = O when this happens.)

38

After each error print, the entire card that the compiler currently has in
the memory will also be printed. (If w = m = o, the error was probably on the

therwise it probably is the card that contains the error.)

The ERROR TAPE 7 error print usually indicates a tape error on the temporary
ge tape 7. If the right end of the line says PARITY ERROR, then this is
indeed a tape error. If the right end of the line has some other characters, they

are a symbol that cannot be found in the dictionary and this may be caused by

. . : o .
either a tape error or a machine error in the dictionary searching process.

XVII. BRLESC RUN ERRCR PRINTS

errors in the data they process. When such an error is detected, a RUN ERROR line

.

is printed and ram is not allowed to continue to run. The error print

[
[
L
L

g
consists of one 1line of information of the following form:

RUN ERROR "Error word" Date Cols. 1-30 of Ident. Card LE No.

when "Error word" is an alphabetic word that identifies the type of error.
Date is the date,

the location (in decimal) of the entry to the subroutine that

2

detected the error.
No. is a number that in some cases was an illegal argument.

Run Error List: (X and Y represent arguments.)

ERROR WORD SUBROUTTNE REASON NO.
LOG X NEG LOGF X<0 X
EXP BIG X EXPF X > 354,89 X/Log 2
ARCSIN 1+ ARCSINF or x> 142749 | x|
ARCCOSF
i 1z
SINCOS N S SINF or COSF |x| /22 > 167 X/2x
or SINCOSF
POWER oTO- POWER. X=0and YO Zero
(Exponentiation)
14
CVFTOI BIG XINTF or]xl > 16 X
XFIXF -

59

ERROR WORD SUBROUTINE
END TAPE t READ TAPE Tried to read beyond information written on tape t.

TAPE TKA u Persistent tape error on trunk A where u is actual tape switch

number and "No." is total number of tape error:

[2}

TAPE TKB u Same as TAPE TKA u except error is on tape trunk B.
BAD FORMAT Jllegal character in a FORMAT statement.
NO(FORMAT More right parentheses than left parentheses in a FORMAT statement.

LONG LINE Output line is more than 170 characters.

XVIII. OPERATION OF THE BRLESC FORTRAN COMPILER

The BRLESC FORTRAN compiler exists on magnetic tape in much the same manner
as the FORAST compiler and operates in a very similar manner. Many copies of the
compiler and the pre-defined subroutines are on one tape and the tape reading is
arranged so that it is checked and automatically corrected by using the next copy
on the tape. The tape automatically backs up twenty copies after the last copy
on the tape 1s used. Normally, successive copies are used for compiling successive
programs.

Much of the translation is done concurrently with the reading of the program
cards (or tape). The partially translated code is put on a temporary tape and the
dictionary and constant pool are kept in the memory. After the last card of the
program is read (E in Column 1), all unassigned symbols in the dictionary are
assigned storage. The memory that will be used by a program is cleared to zeros
and then the temporary tape is read, the translation of each instruction is com-
pleted and it is stored in the memory for running. Programs are stored from 0l04LO
and may extend to the end of the memory. Next, the subroutines are read from the
compiler tape and the ones needed are stored backwards from 09KO. (The standard

input-output routines occupy 09K0-103L.)

The efficiency of the generated code is good except for the referencing of
arrays with variable subscripts. Such one dimensional referencing causes one extra
order to be one, two dimensional referencing causes two extra orders to be done
and three dimensional referencing causes four extra orders to be done. These orders
are extra in the sense that they would not be needed in the corresponding FQRAST
or handcoded programs. Subscript expressions and other arithmetic expressions are
evaluated as they are written except that instructions involving only constants
will be done at compile time. The compiler does not presently make use of the

"accumulate" option allowed on BRLESC instructions.
P
)+IO

.

XIX. SPEED OF BRLESC FORTRAN COMPILING

The BRLESC FORTRAN compiler is very fast and hence is designed for "load and
go" operation. Programmers are encouraged to keep their FORTRAN programs in
symbolic form and translate them each time they are run. This wastes very little
if any computer time and is most convenient for the programmer.

Most of the translation is done concurrently with reading the program cards

at the present maximum speed of 800 cards per minute. The total time required

for translating a program consisting of C cards can be approximated by the formula:
time in secs. = 2 + C/13 + C/75

The 2 seconds is compiler tape time, the C/13 is card read time and C/75 allows

time for reading the temporary tape and completin

to be translated

g the translation. If the program
is put on tape off-line, the C/13 term can be reduced by at least
one-half. ©Sc the translation rate is about 700 statements per m

or about 1500 statements per minute from tape. (The tape rate will vary consid-

erably with the complexity and length of the statements being translated.)

XX, RUNNING FORTRAN PROGRAMS ON BRLESC

list summarizes the steps for compiling and running FORTRAN

s o oy g e

1. Have FORTRAN compiler tape on tape switch 15.
2. Have tape switch T set to a temporary tape.
3. If have card input, be sure manual read switch 36 is down.

T s
liave

y

T ape input (program on tape), set manual read switch 36 up

and set tape switch 6 to input tape unit.

v ol

9
1L ald

[}

.
itput, set manual read switch 38 up and set tape

wn
-

switch 13 to output unit. Also put manual read switch 37 up if

this output tape should be rewound at the end of this problem.

6. If programmer specifies any other input or output tapes, mount
proper tapes and set proper tape switches. (The programmer may
also specify 13 as an output tape without manual read switch 38

being up.)

43

7. Use "tape start" button to initiate compiling the program.

a. O0T3; program error, initiate only if problems are stacked.
b. NLO; end of problem, initiate only if problems are stacked.
c. All other halts or cycles; note PO and NI registers and do a jump to 058.

It should soon get to NLO.

XXI. MAJOR DIFFERENCES BETWEEN FORAST AND FORTRAN

The following list of some of the basic differences between these two pro-
gramming languages should be useful to anyone who knows one language and is inter-
ested in learning the ot

1. Statement numbers in FORTRAN must be integer numbers that are used
as symbolic names whereas the location field in FORAST may contain
any symbolic name and a decimal integer is used as an absolute

address.

2. The initial character of a variable name must be alphabetic in
FORTRAN and indicates the type of variable. In FORAST, the initial

character may be a decimal digit and has no special significance.

3. The type of names used in FORTRAN arithmetic expressions determine
the type of arithmetic performed. In FORAST, the type of arithmetic
performed is floating point unless changed by a MODE card or by pre-
ceding the formula by "FIX" or "INT".

k. The type of a constant is determined in FORTRAN by the presence or
absence of a decimal point. In FORAST, constants assume the same

type as the type of the statement they are written in.

5. In FORTRAN arithmetic formulas, automatic conversion from one type
of variable to another is proveded when the type of the variaBle on
the left of the = symbol is different from the type of the variables
used on the right of the = symbol. In FORAST, this conversion must
be accomplished by the explicit use of the appropriate subroutine
when it is desired.

6. FORAST allows the use of many = symbols to indicate more than one

ey A wr

in an arithmetic formule while FORTRAN allows only

4]
[¢4]
0
'_J
o

result addr

one variable name for a result address.

L2

7. Constant subscripts are enclosed in parentheses in FORTRAN but not
in FORAST.

8. All subscripts have an initial value of one in FORTRAN. In FORAST,
the initial value may be specified as zerc or any positive integer
for each array individually.

9. Variable subscripts are allowed in FORTRAN but not in FORAST. FORAST
accomplishes the same thing more efficiently by allowing any address
to be indexed by a single index register.

10. Three dimensional arrays are allowed in FORTRAN but not in FORAST.

11. FORTRAN allows a multiply and an add or subtract in a subscript
expression while FORAST allows only the addition or subtraction of a
constant in an indexing expression.,

12. FORTRAN allows only one statement per card and FORAST allows more
than one. The statement field is columns 7-72 for FORTRAN and column
11-76 for FORAST.

13. Puncticns in arithmetic expressions may have more than one argument
in FORTRAN but not in FORAST,

14, TImplied multiplication is allowed in FORAST but not in FORTRAN
(although it does work in some PORTRAN compilers.)

15. The FORTRAN IF ement is very restricted compared to the FORAST IF
statement

16. Absolute ad sses are not allowed in FORTRAN but are sllowed in
FORAST.

XXIT. CHECKLIST FOR CONVERTING OTHER COMPUTER FORTRAN PROGRAMS TQ
BRLESC FORTRAN

1. The first card should be an identification card with an asterisk in
Column 1. Columns 2-20 should contain a valid BRLESC problem number.

2. If the signs used in the program are reversed tc BRL usage, insert a
"CHANGE + AND -" control ca fter the identification card. (y is - and x is +
at BRL.)

3. If input data is included with x minus signs, insert a CALL SETMSI(2)
statement where it will be executed befcre the data is read.

b3

L, Insert an extra card with an E in Column 1 between the program deck and

the input data,

5. If the program uses sense switches, it is best to insert control cards

to preset them. (* SETSSW i UP or DOWN)

6. If tapes are used, make sure the tape unit numbers used are compatible
with BRLESC. (Those over 9 may need to be changed.)

Make sure arithmetic statement function names end with F.

T.
8. Make sure that array names of four or more characters do not end with F.

9. Make sure that a nonsubscripted array name has not been used to represent

only the first element of the array.
10. Make sure that FORMAT statements do not contain any + signs.

11. Check for proper printer format control characters at the beginning of
tape output lines. (A blank character specified puts a 1 single space character

on tape.)
12. If desired, change tape output to card output or vice versa by inserting

control cards.

13. The program needs to be modified if it contains any of the following:
1) DRUM statements (2) I cards (complex arithmetic), (3) assembly instructions
r

some other computer or, (4) more memory or tape units than available on BRLESC.
14. ©Names of variables must not be longer than six characters.

15. 1If possible, ask the original programmer if they assumed any special
characteristics of a particular computer or FORTRAN compiler when writing the pro-
gram. For example, on some computers, the variable in a DO statement is nct always

actually used but it is always used on BRLESC.

vvvvvvv 5 &

16. If possible, run a test case that has been run on another computer.

L

XXIII. SUMMARY OF FORTRAN STATEMENTS
Notations:
s,sl,s2,..... are statement numbers (look like integer numbers).
i,il,i2,..... are integer variable names.
m,ml,m2,.,.., are integer variasble names or integer constants.
ae represents an arithmetic expression.
t,c,d,e,f represent any variable names or constants.
t represents a tape unit number.
T represents the statement number or variable name of a FORMAT
statement.
v,Vvl,ve represent variable names.

Specification

1 Statements

General Form

DIMENSION v,vl,ve,

COMMON v,vi,v2,...

FREQUENCY s(m,ml,.

Arithmetic Statements:

Control Statements:

GO TO s
ASSIGN s TO i

5=

Brief Description

Defines names common between subprograms.
Provides optimization information.

T AN
nLroL .

o]

Igriored by

in v.
Arithmetic statement function where asf
represents its name and v,vl,... are the

dummy variables.

DO statement s next.

[N
.

Put address of s into

Do next the

assigned to i by an ASSIGN statement.

L5
2

statement whose number was last

General Form

GO TO (s1,s2,...),1
DO s i = ml,m2,m3
DO s 1 =ml,m2

PAUSE or PAUSE w
CALL name (v,vl,v2,...)

IF(SENSE SWITCH r)sl,s2

SENSE LIGHT r

IF(SENSE LIGHT r)sl,s2

ACCUMULATOR OVERFLOW sl,s2
QUOTIENT OVERFLOW sl,se

DIVIDE CHECK sl,s2

HHH

Subprogram Statements:

SUBROUTINE name (v,vl,v2,...)

\
FUNCTION name {v,vi,v2,...)

=]

Brief Description

Do statement si next.

Repeat statements to and including s with

i=m,ml +m3 ml + 2m3,... until i > m2.
Same as above with m3 = 1.

Do statement sl next if ae is negative;
s2 next if ae is zero and s3 next if ae is

positive.
Dummy statement.

End of execution of main program. (w is

octal no.)
Computer halts. (Displays octal no. w.)
Perform the subroutine specified by "name".

Do statement sl next if switch r is down,

For r = 0 turn all sense lights off. For

r =1,2,3, or 4, turn light r on.

Do statement sl or s2 next if sense light

These are special statements to check
Statement sl
or s2 is done next if indicator is on or

off respectively.

Defines the name and beginning of a sub-

routine.

v,vl,v2,... are the dummy variables.

Defines the name and beginning of a function

subprogram.

Indicates an execution exit of a subprogram.

Marks the end of a subprogram.

L6

General Form Brief Description

Input-Output Statements:

FORMAT (Special Specifications) Describes the fields for input-output data.

READ f, list

PUNCH f, list

Read cards.

Punéh cards.

Print data, (on-line on some computers,

off line on BRLESC).
Read alphanumeric tape.
Write alphanumeric tape.
Read binary tape.

Write binary tape.

END FILE t Write end-of-file mark on tape.

BACKSPACE t Move tape back one record.

REWIND t Rewind tape.

READ DRUM m,ml,list Read drum. (Illegal on BRLESC.)

WRITE DRUM m,ml,list Write drum. (Illegal on BRLESC.)
ACKNOWLEDGEMENTS

Mr. Alfred Anderson reviewed the text and programmed the subroutine that

reads and prints decimal numbers in the object programs. Mr. Michael Romanelli

7 A
oT¥ - N [~n
"::!‘4'_ FRNA I O ar~}el.$»«9\-

LLOYD W, CAMPBELL

PR 7 ?
Y lnn Pieh

" GLENN BECK

L7

REFERENCES

Campbell, L. and Beck, G. The Instruction Code for the BRL Electronic
Scientific Computer (BRLESC), Ballistic Research Leboratories Memorandum
Report No. 1379, November 1961

Campbell, L. and Beck, G. The FORAST Programming Language for ORDVAC and
BRLESC, Ballistic Research Laboratories Report No. 1172, August 1962,
IBM Reference Manual, 709/7090 FORTRAN Programming System (Form C28-6054-2),

1961.

-
I~
B
o+
e
O
=]
5
[
c
o
=

IBM Genera

IBM General Information Manual, Programmer's Primer for FORTRAN Automatic
Coding System for the IBM T7OL Data Processing System (Form F28-6019), 1957.
TRAN Automatic Coding System for the IBM TO4 Data

IBM Reference Manu N Ant
£ZNnNz) 19 8
-0UUJ J, L 50.

Processing System
, 1961.

b4

IBM Reference Manual, 709/7090 FORTRAN Operations (Form C28-6066-3)

7!

48

APPENDIX A

LIST OF PRE-DEFINED FUNCTIONS FOR 709/7090 AND BRLESC
(F indicates fl.pt. and I indicates integer)

NAME ARGUMENT ESU NO, of ARGS. EF INITION
ABSF F F 1 * Absolute value.

XABSF I I 1 Absolute value.

INTE F F 1 Truncation to whole number.
XINTEF F I 1 Convert fl.pt. no. to integer
MODF F F 2 Arg.1l(mod Arg.2)
XMODF I I 2 Arg.1(mod Arg.2).
MAXOF I ¥ > 2 Chooses largest argument.
MAX1F F F >2 Chooses largest argument.
XMAXOF I I > 2 Chooses largest argument.
MAXIF F I ; 2 Chooses largest agrument.
MINOF I F > 2 Chooses smallest argument.
MIN1F F F >2 Chooses smallest argument.
XMINOF I I > 2 Chooses smallest argument.
XMINIF F I > 2 Chooses smallest argument.
FLOATF I F 1 Convert integer to fl. pt.
XFIXF F I 1 Convert fl.pt. to integer.
SIGNF F i 2 Transfer sign of Arg.2 to Ar
XSIGNF I I 2 Transfer sign of Arg.2 to Ar
DIMF F F 2 Arg.l - minimum (Arg.l, Arg.
XDIMF I T 2 Arg.1l - minimum (Arg.l, Arg.
XLOCF ForlI I 1 Stores the address of the Ar
SQRTF F F 1 Square root.

SINF F F 1 Sine (argument in radians)
COSF F F 1 Cosine (argument in radian
LOGF F F 1 Natural logarithm.
EXPF F F 1. Exponential.
ATANF F F 1 Arctangent (result in radians)
TANHF F F 1 Hyperbolic tangent.

For BRLESC only
ARCSINF ¥ F 1 Arcsine.
ARCCOSF F F Arcosine.
ARCTANF F F 1 Arctangent (same as ATANF).

k9

APPENDIX B.

THREE EXAMPLES

OF FORTRAN PROGRAMS

{PROGRAM, INPUT DATA, AND OUTPUY ARE LISTEC)
. EXAMPLE 1 MULTIPLY TWO VECTORS A=B L.We CAMPBELL
DIMENSION A(10),B8(10),Cl10)
READ 2,A,8
DO 3 [=1,410
3 Cil)=A{l)=BII)
PUNCH 4,
STOP
4 FORMAT{14HVECTOR PRODUCT/(SEl14.7))
END
END (THIS CARD REQUIRED ONLY ON BRLESC.)
l14.1 60.35 22.8 91.7 374.18
36.2 193.44 83.61 2.648 9.8
4.21 8.23 15.9 T.77 88.1
27 3.0 8.1118 19.1 42.44
0CT.25,63 BRLESC FORTRAN 2
* EXAMPLE 1 MULTIPLY TWO VECTORS A=B L.we CAMPBELL
HYECTORNBROOUCE

0.5936100E 02

0.9774000E 02

0.4966805€ 03 0.3625200FE 03 0.7125090€ 03 0.3296526E 05

0.5803200E 03 0.6782276E 03 0.5057680F 02 0.4159120F 03

2ot

m

w

]

I»

-

m
w

m

(w1

XAMPLE 2

[MENS

—

READ 2,F

ON f

SMALL=F(1)

bo 9 J4=2,20

IF(SMALL-F(J))9.9,8

SMALL=F{J)

CONTINUE

D
[>

11N
Wie

STOP

NUMBER IN ARRAY F, L.CAMPBELL

FORMAT(11HSMALLEST F=F13.6)

END

-

“n

14.1

36.2

VTN

| S 4

52

22.8
83.61
15.9

8.1118

91.7

2.648

-

.
-4
-~

—
L]
[)
<

Fy L.CAMPBELL

374.18

[Fo]
[)
[]

0
co

-
~
[]
e

42.44

21 FORMAT(1P2EL5.7)
3] FORMAT(24HCONDITIONS NOT SATISFIED)
X=1.
EPS=.00001
ASSIGN 1 70 K
PUNCH 11
44 F=X#(XeX-1.)-1.
PUNCHZL 9 X F
GOTOKe(1lys447)
1 FO=F
IF(F)2,15,15
15 Xp=X
G070 3
2 XN=X
3 X=X1
ASSIGN 4 TO K
GOT0 44
4 Fl=F
IF(F)5,45,45
45 XP=X
GOTO 6
5 XhN=X
6 ASSIGN 7 TO K
IF(FO#F1)664,65,65
65 PUNCH 31
67 STOP
66 X={XN+XP})/2.
GOTQ 44
7 IF(ABSF(F)=EPS)6T,11,71
Tl JF(F)8,72,72
72 %XP=X
GOTO &¢
8 XN=X
GOTO 66
END
END
0CTe25,63 BRLESC FORTRAN 2
»

X FLEX)
1.0000U00€ 00 -1.0000000E 00
2.0000000€ 00 5.0000000€E 0O
1.5000C000E 00 8.7500000CE-01
1.2500000E 00 -2.9687500€E-01
1.3750000E 00 2.2460938BE-01
1.3125000E 00 -5.1513672€E~-02
1.3437500E 00 8.2611084E-02
1:3281250E 00 1,45785958E-02
1.3203125€ 00 -1.8710613€E~-02
1.3242187E 00 -2.1279454E-03
1.3261719€E 00 6.2088296E~-03
1.3251953E 00 2.0366507E-03

EXAMPLE 22 FROM BRL REPORT 1209 CODED IN FORTYRAN-L.CAMPBELL

USE BISECTION METHOD TO FIND ROOT OF F(X)=X#s#3-X-]
11 FORMAT(5Xy1HX10X4HF(X)//)

IN INTERVAL

EXAMPLE 22 FROM B8RL REPORT 1209 CODED IN FORTRAN-L.CAMPBELL

1.3247C70E
1.3249512E
1.3248291E
1.3247681E
1.3247375E
1.3247223E
1.3247147E

00 —-4.6594883€-0

teL2TRCOC LTV Y

00 9.9479097TE-04
00 4.74038B2E-04
00 2.1370716E-04
00 8.3552438E-05
00 1.8477852E-05
00 -1.4058747E-05

53

{1+2)

DISTRIBUTION LIST
No. of No. of
Copies Organization Copies Organization
20 Commander . 1 Commanding General
Defense Documentation Center U.S. Army Tank - Automotive Center
ATTN: TIPCR Land Locomotion Research Laboratory
Cameron Station) Warren, Michigan 48090
Alexandria, Virginia 22314
1 Commanding General
1 Director Army Weapons Command
Advanced Research Projects Rock Island, Illinois 61200
Agency
Department of Defense 1 Comanding General
Washington, D. C. 20301 White Sands Missile Range
New Mexico 88002
1 Director, National Security
Agency } . _ . 1 Director
ATTN: R/D 30, Chief Engineering Major Item Supply Management Agency
Research Division Letterkenny Army Depot
Fort George G. Meade, Maryland Chambersburg, Pennsylvania 17201
20755
. . 1 Commanding General
1 Commanding General U.S. Army Chemical Corps Research &
U.S. Army Materiel Command Development Command
ATTN: AMCRD-RP-B Washington 25, D. C.
Washington, D. C. 20315
]] 1 Commanding General
1 Commanding Officer U.S. Army Chemical Research &
Frankford Arsenal Development
Philadelphia, Pennsylvania 19137 ATTN: Dr. Carl M. Herget
Edgewood Arsenal, Maryland 21040
1 Commanding Officer
Picatinny Arsenal 1 Commanding Officer
ATTN: Feltman Research and U.S. Army CBR Combat Developments
Engineering Laboratories Agency
Dover, New Jersey 07801 ATTN: David T. Shepard, Director
] - A Data Processing Center
1 Commanding General Edgewood Arsenal, Maryland 21040
U.S. Army Missile Command
. . U.S. Army Chemical Center Corps
1 Commanding Officer Engineering Command
Watertown Arsenal Edgewood Arsenal, Maryland 21040
Watertown, Massachusetts 02172
. 1 Director
1 Cona?dlng”Gege?al - U.S. Army Nuclear Defense laboratory
U.S. Army Munitions Command Edgewood Arsensl, Maryland 21040
Dover, New Jersey 07801

55

No. of

Copies

—

—

=

Orpganization
Commanding Officer
o Y R, n nnnnnn o I
Uperauvlolle RELCal C Ul oup
Fdgewood Arcenal, Maryland 21040
Dircctor
U.3. Ay Chemical Corps
auality Ascuiance Technical
hgeney
Edgewood. Arsengl, Maryland
h'mhn
LN
Chairman

U.S. Army Chemical Corps
Technical Committee

Edgewood Arsenal, Maryland
21040

Commanding General

U.3. Army Chemical Co
Proving Ground

Dugway Proving Ground

Dugway, Utah 8ko22

rDs
rps

]
furt

ector

Acaor
Army
orato
AL o

—
~

C

re
[Biolooicsa
O Dl U.LU%LLd
Tab rieg

2.0 Iries

a
a v

Fort Detrick, Maryland 21701

Commanding Officer

U.S. Army Corps of Engineers
Army Reactors Group
Fort Belvoir, Virginia 22060

Director

U.S. Army Corps of Engineers

Geodessy Intelligence and
Mapping Research & Development
Agency

Fort Belvoir, Virginia 22060

Commanding Officer

U.S. Army Corps of Engineers

Polar Research & Development
Center

Fort Belvoir, Virginia 220€0

\J1

(@)Y

-

o

}_)

—

Organization

Commanding General

U.S5. Army Research & Development
Laboratories

Fort Belvoir, Vifginia 22060

Commanding Officer

U.S. Army Corps of Engineers
Army Reactors Group
Germantown, Maryland

1T S Trhotnear
] LOg1IneeY

gine
riment Station

o flliy

@™ ™ Hh

Waterways Exp
P.0. Box 631
Vicksburg, Mississippi

U.S. Army Corps of Engineers

Special Assistant for Nuclear Power
T3 1733wy M7

DULLlWUWLllE =]

Washineton 25, D. C

Jashington 25, D

Director

U.S. Army Corps of Engineers

Cold Regions Research and Engineering

Laboratory

10T e To ol d om md e A raaas
Lcl) Wdoll.LIlél.,UIl Avcnu.c

Wilmette, Illinois

Director

U.S. Army Medical Research and
Nutrition Laboratory

Denver, Colorado

a
Washington 25, D. C.
Commanding Officer
U.S.Army Medical Unit
Fort Detrick, Maryland

(@}

Commandin
U.S. Army
Fort Knox, Kentucky 140120

g QOffice

=

Medical Research Laboratory

No. of
Copies

[

~

[

DISTRIBUTION LIST

Organization

Commanding Officer

U.S. Army Signal Engineering
Agency

Arlington Hall Station

Arlington, Virginia

Commanding General

U.S. Army Signal Missile

Agency

White Sands Missile Ra
o}

88002

1g¢

Commanding Officer

U.S. Army Signal Intelligence
Agency

Arlington Hall Station

Arlington, Virginia

Commanding Officer

U.S. Army Signal Electronic
Research Unit

P.0. Box 205

Mountain View, California

Commanding Officer

U.S. Army Signal Avionics
Field Office

P.0. Box 209

St. Louis 66, Missouri

Chief Signal Officer
Department of the Army
Washington 25, D. C.

Commandant

U.S. Army Signal Corps School
ATTN: Officer Department

Fort Monmouth, New Jersey 07703

Commanding General
U.S. Army Electronic Proving

Ground
Fort Huachuca, Arizona 85613

No.

N

-

of

Copies

1

'._l

Organization

nmanding General
.S5. Army Ele ctronics Research and
Development Laboratory

ATTN: Data Equipment Branch

Fort Monmouth, New Jersey 07703

vy

Commanding General
U.S. Army Electronics Command

TTN: ANSEL-CB

LN,
Fort Monmouth,

New Jersey 07703

Director

U.S. Army Quartermaster Research and
Engineering Field

Evaluation Agency

Fort lee, Virginia 23801

Commanding Office

U.S. Army Transportation Materiel
Command

12th and Spruce Streets

St. Louis, Missouri

Lo}

Commanding Genersal
U.S5. Army Transportation Research
Command

Fort Eustis, Virginia 23604

Commanding General
U.5. Continental Army Command
Fort Monroe, Virginia 23351

Commanding General

U.S. Army Combat Developments Command
ATTN: CDCRE-C

Fort Belvoir, Virginia 22060

Commanding General

USACDC Combined Arms Group
Fort Leavenworth, Kansas 66027
Commanding General

U.S. Army Combat Developments Command
ATTN: CCISG

Fort Belvoir, Virginia 22060

Copies

DISTRIBUTION LIST

of
Organization

1 Commandant

U.S. Army Artillery & Guided
Missile School
Fort Sill, Oklahoma 73503

1 Commandant
U.S. Army CGuided Missile
School
Redstone Arsenal, Alabama 35809
ﬂarch Office
ia Pike
Arlington, Vlrg;nla
1 Commanding Officer
Army Research Officer (Durham)
Box CM, Duke Station
Durham, North Carolina 27706

1 Commandant
Command & General Ctaff College
ATTN: Computing Facility
Fort Leavenworth, Kansas 66027

ATTN: Computing Facility
Maryland 20755

1 Commanding Officer
U.S. Army Conmunications Agency
The Pentagon
Weshington 25, D. C.
1 Profescor of Ordnance
U.S. Military Academy

West Point, New York 10990

3 Chief, Bureau of Naval Weapons
ATTN: DLI-3
Department of the Navy
Washington, D. C. 20360

1 Commander
U.S. Naval Ordnance Laboratory
White Cak
Silver Spring 19, Maryland

58

of
Copies

1

Organization

Commending Officer
U.3. Naval Ordnance la
Corona, California 91
Commander

U.S. Naval Ordnance Test Station
China Lake, California 93557

Library

U.S. Naval Postgraduate School
ATTN: Technical Reports Section
Monterey, California

Director

U.S. Naval Research Labcoratory
ATTN: Code 492

Washington, D. C. 203590

Commander

U.S. Naval Weapons Laboratory

ATTN: Computation & Analysis Branch
Dahlgren, Virginia 22448

Chief, Bureau of Ships

ATTN: Computing Facility
Nernart+mant Of +he I\Tnvy

U\.,l.)uj. Vil 11 &
Washington, D. C. 20360

Chief, Bureau of Yards & Docks

ATTN: Data Processing and Analysis
Branch

Department of the Navy

Washington, D. C. 20360

Chief of Naval Opereations
Department of the Navy
Washington, D. C. 203¢0

Commanding Officer
U.S. Naval Air Development Center

Johnsville, Pennsylvania

Commanding Officer

U.S. Naval Air Test Center
ATTN: Armament Test

U.S. Naval Air Stetion
Patuxent River, Maryland

DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization
2 Commander 1 Commanding Officer
U.S. Naval Missile Center Fleet Operations Control Center
ATTN: Simulation Branch US Pacific Fleet
Systems Department ATTN: F. N. Quinn
Range Operations Navy No. 509
Department Code 3280 Fleet Post Office
Point Mugu, California 93041 San Francisco, California
1 Commander 1 Commandant
Naval Engineering Experiment US Marine Corp
Station Code AX
ATTN: Applied Math Office Washington, 25, D. C.
Code 502
Annapolis, Maryland 1 Director
Marine Corps Landing Force Development
1l Commanding Officer and Director Center
David W. Taylor Model Basin Marine Corps Schools
ATTN: Technical Library. Quantico, Virginia 22134
Code OL2
Washington, D. C. 20007 1 AEDC
Arnold Air Force Station
1 Commanding Officer & Director Tennessee 37389
U.S. Naval Radiological Defense

Laboratory AFFTC (FTFSE)
San Francisco 24, California Edwards Air F Bise

orce
Califormia 93523

=

1 Director

U.S. Neval Supersonic Laboratory 1 AFMIC
Massachusetts Institute of Patrick Air Force Base
Technology Florida

ATTN: Computer Facility
560 Memorial Drive AFMDC
Cambridge, Massachusetts Holloman Air Force Base

New Mexico 88330

[

1 Superintendent

U.S. Naval Academy 1 AFCRL
ATTN: Weapons Department L. G. Hanscom Field
Annapolis, Maryland Bedford, Massachusetts 01731

1 TAC (DCRS)
Langley Air Force Base
Virginia 23365

No. of
Copies

}—l

b~

=

Organization

AUL (3T-AUL-60-118)
Maxwell Air Force Base
Alabama 36112

erson Air Force

Ohio L5433

ASD (ASNCD)
Wright-Patterson Air Force
Base

Ohio L5433

AFWL
Kirtland Air Force Base
New Mexico

Headquarters, USAF (AFAAC)
Washington, D. C. 20330

Headquarters, USAF (AFADA)
Washington, D. C. 20330

Headquarters, USAF (AF NIN3)
Washington, D. C. 20330

USAFA
United States Air Force Academy
Colorado 808L0

Central Intelligence Agency
OCR/Library/ILS

ATTN: Code 163

Washington, D. C. 20505

Director
‘‘‘‘ ce Climatic
Center
225 D Street, S.E.

Washington 25, D. C.

o

=

AV

(@)

Organization

Federal Aviation Agency
National Aviation Facilities
Experimental Station
ATTN: Simulation & Computation
Branch
Atlantic City, New Jersey

Federal Aviation Agency

ATTN: Data Processing Branch-
Aircraft Management Division
Bureau of Flight Standards

P.0. Box 1082

Oklahoma City, Oklahoma

Director

National Aeronautlcs and Space
Administration

ATTN: Mr. R.E. Liettell

1520 H Street, N.W

Washington, D. C. 20546

Director

National Aeronautics and Space
Administration

Flight Research Center
ATTN: Computer Facility
Box 273

Edwards, California

Director
Netiornal Aeronautics and Space
Administration
Gédderd Spac

VN .
L LN .

A5G Mo t;mer Detz-

Computer Operations Branch
Data Systems Division
Anacostia Naval Station
Washington 25, D. C.

No. of

Copies

1

(]

ju

DISTRIBUTION LIST

Director

National Aeronautics and Space
Administration

Lewis Research Center

ATTN: bomputer Fac"* iy

nd Airpor

d, Ohio

Director
National Bureau of Standards
ATTN: Mr. Paul Neissner

Components & Techniques

Section-Data
Processing Sy:
Division
Dr. S. N. Alexander
Computation Laboratory
232 Dynamomenter Building

Washington 25, D. C.

stems

U. S. Department of Commerce
Bureau of Census

ATTN: Computer fFacility
Federal Office Building No. 3
Suitland, Maryland

Brookhaven National Laboratory
ATTN: Computer Facility
Upton, New York

Oak Ridge National ILaboratory
P. 0. Box P
Oak Ridge, Tennessee

Research Analysis Corporation
ATTN: Computer Facility

6935 Arlington Road

Bethesda, Maryland
Washington, D. C. 20014

The Johns Hopkins University
Applied Physics Laboratory
ATTN: Couyuter Facility
8621 Georgia Avenue

S S =

Silver Spring, Maryland

No. of

Copies

1

Organization

California Institute of Technology
Jet Propulsion lLaboratory

ATTN: Computer Facility

L80OO Oak Grove Drive

Pasadena, California 91103

Ampex Computer Products Company
9937 Jefferson Boulevard
Culver City, California

Datatrol Corporation
Consulting & Programming Services
Mr Cooper, Vice President

Silver Spring, Maryla

E. I. DuPont DeNemours
Engineering Department
ATTN: Theodore Baumeister, III
Wilmington 98, Delaware

Company

Engineering Research Associates

ivision of Remington Rand, Inc.
1902 W. Minnehaha Avenue
St. Paul, Minnesota

General Millsg
Electronics Group

1000 16th Street, N. W.
506 Solar Building
Washington 6, D. C.

International Business Machine
Corporation
Engineering Laboratory
ATTN: Customer Executive
Education Department

s
an Jose, California

Raytheon Manufacturing Company
P. O. Box 398
Bedford, Massachusetts

No. of

Covies

==

Crpanization

Remington Rand Univac

Division of Sperry Rand
Corporation

ATTN: Systems Analysis

1900 W. Allegheny

St. Paul, Minnesota

Avenue

Science Research Association
Incorporated
259 East Erie Street
ATTN: Mr. Don Shepherd
Project Director
Chicago 11, Illinois

Technitrol Engineering
Corporation

1952 K. Alleghany Avenue

Philadelphia 34, Pennsylvania

1

Technology

ATTN: Comptroller
Pasadena, California

Columbia University

Flectronics Research
Laborataries

(%2 Viest 1725 Street

New YQPK 2'(, New York

Columbia University

Lewis Cyclation Laboratory

ATTN: Computer lFacility

Box 157

Irvington on Hudson, New York

Cornell University

ATTN: Coordinator of Research

Tthaca, New York

Dartmouth Ccollege
ATTN: Computation Center

Hanover, New Hampshire

P

o

[

-

-

Organization

The George 'Jashington University
ATTN: Logistics Research Project
707 22nd Street, N.W.

Washington 7, D. C.

Georgia Instituzte

Engineering Experiment Station

ATTN: Rich i lectronic Computer
Center

Atlanta 15, Georgia

of Technology

Harvard Universi
Computation Laboratory
Cambridge 38, Massachusetts

Indiana University

ATTN: Research Computing Center
Bloomington, Indiana

yiversity of Science
Qsr

Engineering Experiment Station
ATTN: Cyclone Computer Laboratory
Ames, ITowa

The Johns Hopkins University
ATTN: Computation Center
jf h a.uu. \,harle Q+rnn+c

[RV G =i e

Baltimore 18, Maryland

Lehigh University
ATTIN: Computer Facility
iethehem, Pennsylvania

Marquette University

ATTN: Computing Center
1515 West Wisconsin Avenue
Milwaukee, Wisconsin

Michigan State University
College of Engineering

AT . Computer Taboratory
Itast lansing, Michigan

=

DISTRIBUTION LIST

Missouri School of Mines
and Metallurgy

ATTN: Computer Facility

Rolla, Missouri

New York University
College of Engineering

ATTN: Computation &
Statistical Laboratory

University Heights

New York 55, New York

1 2

Oklahoma State University
The Computing Center
ATTN: Department of
Mathematics

Stillwater, Oklahoma

D -

Oregon State College
Department of Mathematics
ATIN: W. E. Milne
Corvallis, Oregocn

Polytechnic Institute of
Brooklyn

ATTN: Mr. Warren Roes

33% Jay Street

Brooklyn 1, New York

Princeton University
Mathematics Department
Princeton, New Jersey

Stanford University

ATTN: Computation Cent
Stanford, California 1

University of Alberta
Department of Mathematics
ATTN: Professor John McNamee
Edmonton, Alberta, Canada

63

(]

Organization

University of California

Berkeley, California

University of Delaware
Newark, Delaware

University of Iiiinois
Department of Mathematics
Urbana, Illinois

University of Pennsylvania

The Moore School of Electrical
Engineering

ATTN: Mr. Ingerman

Philadelphia L4, Pennsylvania

Professor Bruce Charters
Computing ILaboratory
Brown University
Providence, Rhode Island

Dr. L. H. Thomas

Watson Scientific Computing
Laboratory

612 W. 116th Street

New York 27, New York

Mary Broadhead

Australian Group

c/o Military Attache
Australian Embassy

2001 Connecticut Avenue, N. W,

Washington, D. C. 20008

Organization

O
e

he Scientific Information Officer
Defence Research Staff

British Embassy

3100 Massachusetts Avenue, N.W.
Washington, D. C. 20008

=

Defence Research Member
Canadian Joint Staff

2450 Massachusetts Avenue, N.W.
Washington, D. C. 20008

Aberdeen Proving Ground
Chief, TIB

Air Force Liaison Office

Marine Corps Liaison Office

Navy Liaison Office

CDC Liaison Office
h

D & PS Branch Library

AD Accession No.
Ballistic Research Laboratories, APG
BRLESC F'ORTRAN

UNCLASSTFIED

Mathematical computers -

Lloyd W. Campbell and Glenn Beck coding
Mathematical computers -
BRL Report No. 1229 November 1963 operation

ROT & E Project No. 1MO10501A003
UNCLASSIFIED Report

FORTRAN is e popular programming language that, has been implemented on many
computers. It is now available on Ballistic Research Laboratories®' BRLESC com-
puter., This report describes the FORTRAN langumge in generel and includes specific
details about 1ts implementation on BRLESC.

AD Accession No.
Ballistic Research Laboratories, APG
BRLESC FORTRAN

URCLASSIFIED

Mathematical computers -

Idoyd W, Campbell and Glenn Beck coding
Mathematical computers -
ERL Report No. 1229 Rovember 1963 operation

'RDT & E Project Ro. IMO10501A003
UNCLASSIFIED Report

FORTRAN is a popular programming language that has been implemented on many
computers. It is now available on Ballistic Research Laboratories' BRLESC com-
puter. This report describes the FORTRAN language in generel and includee specifid
details about its implementation on BRLESC.

AD Accession No.
Ballistic Research Laboratories, APG
BRLESC FORTRAN

UNCLASSIFIED

Mathematical computers -

Lloyd W. Campbell and Glenn Beck coding
Mathematical computers -
BRL Report Wo. 1229 November 1963 operation

RDT & E Project No. 1MO10501A003
UNCLASSIFIED Report

FORTRAN is a popular programming language that has been implemented on many
computers. It is nmovw availsble on Ballistic Research Laboratories® BRLESC com-
puter., This report describes the FORTRAN language in general and includes specific
details about its implementation on BRLESC.

AD Accession No.
Ballistic Research laboratories, APG
BRLESC FORTRAN

UNCLASSIFIED

Mathematical computers -

Lloyd W. Campbell and Glenn Beck coding
! Mathematical computers -
| BRL Report No. 1229 November 1963 operstion

RDT & E Project ®o. 1IMO10501A003
UNCLASSIFYED Report

FORTHAN is a popular programming language that has been implemented on many
computers. It is now available on Ballistic Research Leboratories! BRLESC com-
puter. This report describes the FORTRAN langusge in general and includee specific
details about 1ts implementation on BRLESC.

AD Accession No.
Ballistic Research Leboratories, APG
BRLESC FORTRAN

UNCLASSIFIED

Mathematical computers -

Lloyd W, Campbell and Glenn Beck coding
Mathematical computers -
BRL Report No. 1229 November 1963 operation

RDT & E Project Fo. IMO10501.A003
UNCLASSIFIED Report

FORTRAN is & popular programming language that has been implemented on many
computers. It is now availeble on Ballistic Research Laboratories' BRLESC com-
puter. This report describes the FORTRAN language in general and includes specific
details about its implementation on BRLESC.

AD Accession No.
Ballistic Research Laboratories, APG
BRLESC FORTRAK

URCLASSTFIED

Mathematical computers -

Lloyd W, Campbell and Glenn Beck coding
Mathematical computers -
BRL Report No. 1229 Rovember 1963 operation

RDT & E Project No. IMO10501A003
UNCLASSIFIED Report

FORTRAN is a popular programming language that hes been implemented on many
computers. It is now available on Ballistic Research Laboretories' BRLESC com-
puter. Thie report describes the FORTRAN language in general and includes specifig
detalls about its implementation on BRLESC.

AD Accession No.
Ballistic Research Leboratories, APG
BRLESC FORTRAN

UNCLASSIFIED

Mathematical computers -

Lloyd W. Campbell and Glenn Beck coding
Mathematical computers -
BRL Repcrt No. 1229 November 1963 operation

RDT & E Project No. 1MO10501A003
URCLASSIFIED Report

FORTRAN is a popular programming language that has been implemented on many
computers. It is now available on Ballistic Research leboratories' BRLESC com-
puter. This report describes the FORTRAN language in general and includes specific
details about its implementation on BRLESC.

AD Accession No.
Ballistic Research laboratories, APG
BRLESC FORTRAN

UNCLASSIFIED

Mathematical computers -

Lloyd W. Campbell and Glenn Beck coding
Mathematical computers -
BRL Report No. 1229 November 1963 operation

RDT & E Project No. 1IMO10501A003
UNCLASSIFIED Report

FORTRAN is a popular programming language that hes been implemented on many
coxputers. It 1s now available on Ballistic Research Laboratories' BRLESC com-
puter. This report describes the FORTRAN language in genersl and includes specific
details about its implementation on BRLESC.

